
REVISED CURRICULUM OF

CIVIL ENGINEERING DIPLOMA PROGRAMME

IN

MULTI POINT ENTRY & CREDIT SYSTEM

For the State of Arunachal Pradesh

PART - II

National Institute of Technical Teachers' Training & Research Block – FC, Sector – III, Salt Lake City, Kolkata – 700 106 http://www.nitttrkol.ac.in

REVISED CURRICULUM OF PART - II

CIVIL ENGINEERING DIPLOMA PROGRAMME

IN MULTI POINT ENTRY & CREDIT SYSTEM

NATIONAL INSTITUTE OF TECHNICAL TEACHERS' TRAINING AND RESEARCH Block - FC, Sector - III, Salt Lake City, Kolkata - 700106

February 2013

Foreword

Government of Arunachal Pradesh has entrusted NITTTR, Kolkata for revising the existing course curricula in eight subject areas and for developing the new course curricula in the two areas.

Revised Course Curricula:

- 1. Herbal Technology
- 2. Garment and Fashion Technology
- 3. Hotel Management and Catering Technology
- 4. Travel and Tourism Management
- 5. Electrical and Electronics Engineering
- 6. Civil Engineering
- 7. Computer Science and Engineering
- 8. Automobile Engineering

New Course Curricula:

- 1. Electronics and Communication Engineering
- 2. Electrical Engineering
- 3. Mechanical Engineering

The Institute conducted a series of workshop involving experts in different subject areas for development of the course curricula. An effort has also been made to ensure that the revised course curricula do not deviate significantly from the existing course curricula and at the same time reflect the recent trends in a particular subject area.

The Institute welcomes any meaningful suggestions which can be incorporated in the final versions of the above said document.

Sd/-(Prof. S. K. Bhattacharyya) Director NITTTR, Kolkata

Table of Contents

Sl. No.	TOPIC	PAGE NO.
1.	Scheme of Studies & Evaluation	I – III
2.	Basic Technology Courses	1 - 30
3.	Applied Technology Courses	31 - 56
4.	Elective Courses	57 - 68
5.	Sample Path	IV – IX

BASIC TECHNOLOGY COURSES

Sl.	Code	Course		Study Sc	cheme]	Evaluatio	n Scheme	e		Total	Credit
No			Pre-	Conta	ct Hour/	'Week		Theory		Practical			Marks	
			requisite	L	Т	Р	End	Progr	essive	End	Progr	essive		
							Exam	Asses	sment	Exam	Asses	sment		
								Class	Assign		Sessio	Viva		
								Test	ment		nal			
1.	CE401	Building Material		3	1	2	75	10	15	25	25	0	150	5
2.	CE 402	Hydraulics		3	1	2	75	10	15	25	25	0	150	5
3.	CE 403	CE Drawing – I	G201 &	0	0	4	0	0	0	50	50	0	100	2
			G202											
4.	CE 404	CE Drawing – II	CE403	0	0	4	0	0	0	50	50	0	100	2
5.	CE 405	Surveying – I		3	1	2	75	10	15	25	25	0	150	5
6.	CE 406	Structural Mechanics	G205	3	1	0	75	10	15	0	0	0	100	4
7.	CE 407	Geotechnical Engg I		3	1	2	75	10	15	25	25	0	150	5
8.	CE 408	Theory of Structure	CE406	3	1	0	75	10	15	0	0	0	100	4
9.	CE 409	Water & Waste Water	CE402	3	1	2	75	10	15	25	25	0	150	5
		Engg												
10.	CE 410	Building Construction	CE401	3	1	0	75	10	15	0	0	0	100	4
		TOTAL		24	8	18	600	80	120	250	250	0	1250	41

APPLIED TECHNOLOGY COURSES

Sl.	Code	Course	St	udy Scl	heme]	Evaluatio	n Schem	e		Total	Credit
No			Pre-	Conta	act Hou	r/Week		Theory		Practical			Marks	
			requisite	L	Т	Р	End	Progr	Progressive		End Progressive			
							Exam	Asses	sment	Exam		sment		
								Class	Assign		Sessio	Viva		
								Test	ment		nal			
1.	CE501	Highway &		3	1	2	75	10	15	25	25	0	150	5
		Transportation Engg.												
2.	CE 502	Geotechnical	CE407	3	1	0	75	10	15	0	0	0	100	4
		Engineering II												
3.	CE 503	Water Resource Engg	CE 402	3	1	0	75	10	15	0	0	0	100	4
4.	CE 504	Estimating I		2	2	0	75	10	15	0	0	0	100	4
5.	CE 505	Estimating II	CE 504	2	2	0	75	10	15	0	0	0	100	4
6.	CE 506	Surveying II	CE 405	3	1	2	75	10	15	25	25	0	150	5
7.	CE 507	Design & Detailing of	CE 406	3	1	2	75	10	15	25	25	0	150	5
		Structure – I												
8.	CE 508	Concrete Technology	CE 401	3	1	2	75	10	15	25	25	0	150	5
9.	CE 509	Design & Detailing of	CE 406	3	1	2	75	10	15	25	25	0	150	5
		Structure II												
10.	CE 510	Earthquake Resistant	CE 408 &	3	0	0	75	10	15	0	0	0	100	3
		Design & Construction	CE509											
11.	CE 511	Technical Seminar		0	0	6	0	0	0	0	50	50	100	2
12.	CE 512	Project		0	0	8	0	0	0	0	100	50	150	4
13.	CE 513	Industrial Training (3		0	0	0	0	0	0	0	100	100	200	10
		weeks OJT + 1 week												
		orientation)*												
		TOTAL		28	11	24	750	100	150	125	375	200	1700	60

* Students must be either in 4th term or higher.

Sl.	Code	Course		Study Scheme Evaluation Scheme				Total	Credit					
No			Pre-	Conta	act Hour/	/Week		Theory		Practical			Marks	
			requisite	L	Т	Р	End	Progr	essive	End	Progr	essive		
							Exam	Asses	sment	Exam	Asses	sment		
								Class	Assign		Sessio	Viva		
								Test	ment		nal			
1.	CE601A	Professional Practice		3	1	0	75	10	15	0	0	0	100	4
		& Construction												
		Management												
2.	CE 601B	Environmental		3	1	0	75	10	15	0	0	0	100	4
		Engg.												
3.	CE 601C	Tunnels & Bridges		3	1	0	75	10	15	0	0	0	100	4
4.	CE 602A	Advanced Survey		1	0	4	0	0	0	50	25	25	100	3
5.	CE 602B	Computer Aided		1	0	4	0	0	0	50	25	25	100	3
		Drawing & Design												
		TOTAL		4	1	4	75	10	15	50	25	25	200	7

ELECTIVE COURSES: TWO to be taken, One Practical based and other Theory based

IV

BASIC TECHNOLOGY COURSES

BUILDING MATERIALS

L T P 3 1 2

Total marks: 150

Total Contact hrs.: Theory: 45 Tutorial 15 Practical: 30 **Theory Class duration:** 45 classes of 1 br. or 60 classes of 45 minutes **Pre requisite: Nil Credit: 5** Curri. Ref. No.: CE401

Theory: End Term Exam: 75 P.A.: 25 *Practical:* End Term Exam: 25 I.A : 25

RATIONALE:

The subject of building material is very important for the diploma holders in Civil Engineering. The course material has been designed for the students to know the properties of the building materials as well as the strength of the material as per IS code of practice. Further, practical input has been given for augmenting the learning by the students.

AIM:

To know the properties of different materials for use and quality control in construction works

THEORY: 45 hrs.

Unit		Topic/Sub-Topic	Hrs.	Total Hrs.
1.0	INTR	ODUCTION	1	
	1.1	Different types of materials used in construction.		
	1.2	Definition of engineering materials		
2.0	BRICI	X	4	
	2.1	Classification, composition, preparation, properties of bricks		
3.0	LIME		2	
	3.1	Classification, composition & use		
4.0	CEME	ENT	6	
	4.1	Classification, composition, types, grades		
	4.2	Manufacturing of cement		
	4.3	Uses of Cement, testing of Cement.		
	4.4	Discussion on relevant I.S codes.		
5.0	SAND)	3	
	5.1	Classification, zoning of sand, bulking factor, testing of sand		
	5.2	Discussion on relevant I.S. codes.		
6.0	STON	IE	6	
	6.1	Classification of rocks		
	6.2	Characteristics of different types of stones		

	6.3	Uses of different types of stone based on size	
	6.4	Grading of aggregates	
	6.5	Testing of stone aggregates	
	6.6	Discussion on relevant IS codes	
7.0	TIME	BER	4
	7.1	Classification of timber, structure of timber trees	
	7.2	Defects of timber, diseases and decay of timber	
	7.3	Seasoning, preservation and uses of timber.	
	7.4	Replacement of timber by other alternate materials	
8.0		ACTORY MATERIALS AND CLAY PRODUCTS, CRETE TILES, MARBLES	2
	8.1	Definition, classification, properties and uses.	
	8.2	Introduction to tiles, marbles, terracotta, porcelain, glazing	
	8.3	Ideas on market form of products	
9.0	MOR	TAR AND CONCRETE	4
	9.1	Types of mortar and concrete, uses of mortar and concrete	
10.0	STEF	EL AND OTHER MATERIALS	4
	10.1	Different use of steel in construction: Reinforcement and Structural Steel as per IS code	
	10.2	Other materials: Plastic Fiber, PVC	
11.0	WHI'	TE WASHING AND PAINTING	6
	11.1	White washing, colour washing, distempering	
	11.2	Painting, different type of paints, manufacturing of paints	
12.0	FORM	MATIVE EVALUATION	3
		TOTAL:	45

PRACTICAL

Unit	Topic/Sub-Topic	Hrs.	Total hrs.
1.0	Compressive Strength of Brick		
2.0	Water Absorption of Brick		
3.0	Effloverscence of Brick		
4.0	Warpage of Brick		
5.0	Compressive Strength of Brick masonry by Prism Test		
6.0	Grading of Course and Fine Aggregate		
7.0	Bulking of Sand		
8.0	Specific Gravity of Fine Aggregate		
9.0	Tensile Test of Reinforced Rod		
10.0	Bend & Rebend		
11.0	Testing of Timber Beam for Flexural Strength		
		TOTAL:	30

REFERENCE OF BOOKS:

Sl. No.	Name of Book	Author	Publishers
1.	Materials of Construction	D.N.Ghosh	Tata Mc-Grew Hills
2.	Building Materials	P. C. Varghese	PHI Learning
3.	Building Materials	S. K. Duggal	New Age International
4.	Engineering Materials	Rangwala	Charotar Publishing House
5.	Building Material and Construction	Gurcharan Singh	Standard Book House
6.	National Building Code		Bureau of Indian Standard

HYDRAULICS

L	T	P		Curri. Ref. No.: CE402
3	1	2		
Total (Contact	hrs.:	Total marks: 150	Theory:
Theory: 4	45 Tutori	al:15		End Term Exam: 75
Practical	: 30			P.A.: 25
Theory	v Class d	luration:		Practical:
45 classe	s of 1 hr. d	or		End Term Exam: 25
60 classe	es of 45 m	vinutes		I.A : 25
Pre req	uisite: I	Nil		
Credit:	5			

RATIONALE:

The subject of Hydraulics deals with behaviour of fluid at rest and in motion. The Civil Engineering profession is much concerned with subjects like Water supply, sanitary Engineering and irrigation Engineering, which need a sound knowledge of Hydraulics. Therefore, hydraulics is a very important basic subject for students of civil engineering.

AIM:

To develop basic concepts regarding behaviour of fluid, specially water, at rest and in motion.

THEORY

Unit	Topic/Sub-Topic	Hrs.	Total hrs.
1.0	HYDROSTATICS:	12	
	1.1 Properties of fluids, density, specific gravity, surface tension, capillarity, viscosity and their uses		
	1.2 Pressure and its measurements : Definitions- intensity of pressure, atmospheric pressure, gauge pressure, absolute pressure and vacuum pressure; Relation between atmospheric pressure, absolute pressure and gauge pressure, pressure head, pressure gauges		
	1.3 Pressure exerted on an immersed surface; Definitions- total pressure, resultant pressure, expression of equation for total pressure exerted on horizontal, vertical and inclined immersed surface (No deduction); Center of pressure and its expression.		
	1.4 Floatation and buoyancy: Archimedes principle- buoyancy & center of buoyancy, center of pressure, metacenter, metacentric height, determination of metacentric height by experimental method, equilibrium of floating bodies- stable, unstable & neutral equilibrium		
2.0	KINEMATICS OF FLUID FLOW	26	

- 2.1 Basic equations of fluid flow and their application (No deduction): rate of discharge, equation of continuity of a liquid flow, total energy of a liquid in motion- potential, kinetic & pressure, Bernoulli's theorem and its limitations. Practical applications of Bernoulli's equation.
- 2.2 Flow through Orifices: orifices, types of orifices, venacontracta, hydraulic coefficients and their relations, determination of hydraulic coefficients, discharge formulae for different types of orifices and their application (No deduction)
- 2.3 Flow through mouthpieces: mouthpieces, types of mouthpieces, discharge formulae for different types of mouthpieces and their application (No deduction)
- 2.4 Flow over Notches: notch, types of notches, discharge formulae for different types of notches and their application (No deduction)
- 2.5 Flow over Weirs: weir and its difference with notches, types of weirs, discharge formulae for different types of weirs and their application (No deduction)
- 2.6 Types of Flow through pipes: uniform & non-uniform; laminar & turbulent; steady & unsteady; Reynold's number and its implication.
- 2.7 Losses of head of a liquid flowing through pipes: due to friction (statement of Darcy's equation), sudden enlargement, sudden contarction, change of direction of flow, loss at inlet & exit (No deduction, only statement of formulae and their application), total energy lines and hydraulic gradient lines.
- 2.8 Flow through Open Channels: types of channel sectionsrectangular, trapezoidal & circular, Discharge formulae-Chazy's and Manning's equation, best economical section, phenomenon of hydraulic jump (only description and no deduction)

3.0 PUMPS

- 3.1 Types of pumps
- 3.2 Centrifugal pumps- basic principles, discharge, horse power of pump, efficiency of centrifugal pump, simple numerical problems
- 3.3 Reciprocating pumps: types, operation, discharge, calculation of horse power, efficiency, simple numerical problems
- 4.0 FORMATIVE EVALUATION

3

4

TOTAL:

45

PRACTICAL

UNIT	ТОР	IC/SUB-TOPIC	Hrs.	Total hrs.	
5.0	HYD	RAULIC LAB PRACTICAL		30	
	5.1	Determination of metacentric height of a floating body			
	5.2	Verification of Bernoulli's theorem			
	5.3	Determination of the co-efficients of discharge, contraction			
		and velocity of an orifice			
	5.4	Determination of coefficient of discharge of a rectangular			
		notch fitted in an open channel			
	5.5	Determination of coefficient of discharge of a V- notch			
		fitted in an open channel			
	5.6	Determination of coefficient of discharge of a venturimeter,			
		orificemeter fitted in a pipe			
	5.7	Determination of head loss due to friction and coefficient of			
		friction for flow through pipes.			
	5.8	Study of the parts of a centrifugal pump and determination			
		of efficiency			
	5.9	Study of the parts of a reciprocating pump and			
		determination of efficiency			
	5.10	Demonstration of discharge measurement by a current meter		20	

TOTAL: 30

Sl. No.	Name of Book	Author	Publishers
1.	Hydraulics	Cruise James F.	Cengage
2.	Hydraulic and Fluid Mechanics	P. N. Modi	Standard Book House
3.	Fluid Mechanics	S.C. Rangwala	Charotar Publishing House
4.	Introduction Fluid Mechanics	Fay	PHI Learning
5.	Fluid Mechanics, 2 nd ed.	Mohanty	PHI Learning
6.	Solid and Fluid Mechanics	Bhavikatti, S. S.	New Age International (P) Ltd.
7.	Fluid Mechanics Through Problems	Garde, R. J.	New Age International (P) Ltd.
8.	Fluid Mechanics and its Applications	Gupta, Vijay	New Age International (P) Ltd.
9.	Introduction to Fluid Mechanics & Fluid Machines	Som & Biswas	ТМН
10.	Fluid Mechanics	F. White	ТМН
11.	Introduction to Fluid Mechanics	Edward J. Shaughnessy, Ira M. Katz & James P. Schaffer	Oxford University Press

REFERENCE BOOKS:

CIVIL ENGINEERING DRAWING – I

 $\begin{array}{cccc} L & T & P \\ 0 & 0 & 4 \end{array}$

Total Contact hrs.: Practical: 60 Pre requisite: 201 & 202 Credit: 2 Total marks: 100

Curri. Ref. No.: CE403

Practical: End Term Exam: 50 I.A : 50

RATIONALE:

This subject is very important for diploma holders in Civil Engineering as this subject provides an input to the students to draw the different structural elements accurately to a chosen scale as required for construction. The students are required to make working drawings showing all different components of a structure so that the same may be easily read and the construction of different units of structures can be done once the working drawings are made available to the constructors.

AIM:

The subject aims to introduce the various parameters, which are required for drawing the geometric figures as well as components of different types of structures.

Unit	Topic/Sub-Topic	Hrs.	Total hrs.
1.0	INTRODUCTION:	4	
	1.1 Introduction of civil engineering drawing – foundation plinth, conventional signs of brick masonry, stone masonry, concrete, use of scales (Plate No. 1)		
2.0	DOORS AND WINDOWS:	8	
	2.1 Different types of doors and windows with their parts (Plate No. 2)		
3.0	ROOF TRUSSES:	8	
	3.1 Different types of roof trusses such as king post trusses, queen post trusses (Plate No. 3)		
4.0	STAIR CASE:	12	
	4.1 Conventional sign of staircase, introduction of quarter turn, newel, dog legged, open well newel, open well geometrical, bifurcated, half turn geometrical staircases – only plan (Plate No. 4)		
	Plan and elevation of newel & dog-legged staircase (Plate No. 5)		
5.0	BUILDING DRAWING:	24	
	5.1 Plan, elevation and section of simple single storeyed building with masonry wall with:		
	Sloped roof with steel trusses		
	• RCC roof slabs with lintel		
	• Assam type building (Plate No. 6, 7, 8)		

- 5.2 Development of two storeyed building from line plans and specifications with details
 - Site Plan
 - Plan
 - Elevation
 - Foundation plan
 - Sectional elevations (Plate No. 9)

6.0 FORMATIVE EVALUATION

TOTAL:

4

60

Sl. No.	Name of Book	Author	Publishers
1.	Civil Engineering Drawing & Design	D. N. Ghosh	CBS Publishers
2.	Civil Engineering Drawing	S.C. Rangwala	Charotar Publishing House
3.	Building Drawing and Planning with an Integrated Approach	Shah	ТМН
4.	Engineering Drawing and Graphics + AutoCAD	Venugopal, K.	New Age International (P) Ltd.
5.	Civil Engineering Drawing	Gurcharan Singh	Standard Publishers
6.	A Course in Civil Engineering Drawing	V. B. Sikka	S.K. Kataria & Sons
7.	Building with an Integrated Approach to Built Environment	Kala, Shah & Patki	ТМН
8.	Civil Engg. Drawing	TTTI, Bhopal, Work Book	

REFERENCE BOOKS:

CIVIL ENGINEERING DRAWING - II

 $\begin{array}{cccc} L & T & P \\ 0 & 0 & 4 \end{array}$

Total Contact hrs.: Practical: 60 Pre requisite: CE403 Credit: 2 Total marks: 100

Curri. Ref. No.: CE404

Practical: End Term Exam: 50 I.A : 50

RATIONALE:

This subject deals with drawing to be made for different components of sanitary engineering, bridges & culverts, roads & railways and blue prints to be made of the drawings. This also relates to preparation of working drawing as required for actual drawing.

AIM:

To prepare the students to draw working drawing for different items pertaining to sanitary & water supply, bridges & culverts, roads & railways, plan, elevation & sections of RCC building etc. and to introduce the skill of computer aided drafting.

UNIT	TOPIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	SANITARY ENGINEERING	08	
	1.1 Plan, Sectional elevation of sanitary latrine with septic tanks, inspection chambers, manholes, soak pits showing soil pipe connection. (Plate No. 1)		
2.0	BRIDGE AND CULVERTS:	12	
	2.1 Plan, elevation, section of simple (i) timber bridge (ii) RCC bridge either freely supported hollow circular type(single span) or RC balanced cantilever (single span) as constructed by the local PWD. Drawings may be shown(from the existing blue-print) (Plate No. 2)		
	2.2 Plan, elevation, section of a box culvert and hume pipe, culvert, RCC slab culvert, Drawing and Models may be shown (Plate No. 3)		
3.0	ROADS AND RAILWAÝS:	08	
	3.1 Cross Section of (i) National highway/ state highway (ii) Major district road (iii) Minor district road (Plate NO. 4)		
	3.2 Cross-section of Railway for B.G., M.G. and N.G. (Plate No. 5)		
4.0	 COMPUTER AIDED DRAFTING: (To use the Auto-CAD or any other similar drafting package to produce Civil engineering drawings such as, Plan Elevation, Section, etc. The use of commands will enable the students to perform different activities as listed below.) 4.1 Making of RC or masonry building and Culvert drawings. 	28	

- 4.2 Editing /modifying of existing drawing.
- 4.3 Dimensioning, drawing section lines and hashed section lines.
- 4.4 Writing texts on Drawings.
- 4.5 Display of drawings on Computer screens
- 4.6 Making use of different settings of drawings related to scale unit, co-ordinate system.
- 5.0 FORMATIVE EVALUATION

04

60

TOTAL:

REFERENCE BOOKS:

Sl. No.	Name of Book	Author	Publishers
1.	Civil Engineering Drawing & Design	D. N. Ghosh	CBS Publishers
2.	Civil Engineering Drawing	S.C. Rangwala	Charotar Publishing House
3.	Building Drawing and Planning with an Integrated Approach	Shah	ТМН
4.	Engineering Drawing and Graphics + AutoCAD	Venugopal, K.	New Age International (P) Ltd.

SURVEYING – I

L T P 3 1 2

Total marks: 150

Total Contact hrs.: Theory: 45 Tutorial: 15 Practical: 30 Theory Class duration: 45 classes of 1 hr. or 60 classes of 45 minutes Pre requisite: Nil Credit: 5 Curri. Ref. No.: CE405

Theory:

End Term Exam: 75 P.A.: 25 **Practical:** End Term Exam: 25 I.A: 25

RATIONALE:

Surveying is an essential component of the day to day work of a Civil Engineering Technician. The job includes conducting detailed surveying, plotting of survey data, preparation of survey maps etc. In view of its importance the course content has been divided into 2 parts and introduced sequentially as Surveying-I and Surveying-II. Each theory course is accompanied by practical course work to provide hands on experience.

The course content of Surveying-I includes the basic concept of surveying, horizontal linear and angular measurements and conducting surveys involving horizontal linear and angular measurements with stress on familiarization with various equipment used. It also includes vertical linear measurements to indicate the profile of the land surface by levelling has also been covered in details

AIM:

The course content of Surveying -I has been designed to provide adequate information to develop competency in a learner to-

- 1. Comprehend the concepts of surveying,
- 2. Carry out horizontal linear and angular measurements using appropriate equipment,
- 3. Conduct survey work in field using horizontal linear and angular measurements,
- 4. Record the data observed during the survey work,
- 5. Plot the survey map from the recorded data,
- 6. Compute the data required for plotting,
- 7. Interpret the plotted survey map and compute data from it.
- 8. Determination of elevations of points on the earth surface, using appropriate equipment,
- 9. Record the data observed during leveling and compute the data required for plotting
- 10. Plotting profile map and contour map using recorded data
- 11. Conducting Plane table survey in field using horizontal linear measurement

COURSE CONTENT:

Unit	Top	ic/Sub-Topic	Hrs.	Total hrs.
1.0	BAS	IC CONCEPT AND GENERAL INTRODUCTION:	02	
	1.1	Broad aims, definition, uses, principles and classification of survey		
	1.2	Field work and office work		
2.0	MEA	ASUREMENT OF DISTANCE:	04	
	2.1	Instruments for measuring distance-Pegs, ranging rods, ranging poles, offset rods, lathes, whites, plumb bob, chain, tape		
	2.2	Details, types, testing and adjustment of chains		
	2.3	Direct and indirect ranging (using ranging rod only)		
3.0	CHA	JIN SURVEY	06	
	3.1	Definition, principle and use of chain survey		
	3.2	Well condition triangle, selection of stations, base line, check line, tie line		
	3.3	Kinds of offsets, methods of locating building nalla/drain etc.		
	3.4	Instrument for measuring right angles. Cross staff and optical square		
	3.5	Errors due to incorrect ranging, limiting length of offset, error in length, area and volume due to incorrect chain, cumulating and compensating error, rape correction, numerical problems		
	3.6	Different obstacles in chaining ,numerical problems		
1.0	CON	IPASS SURVEY	08	
	4.1	Definition, basic difference between chain and compass surveying, open and closed travesing with brief description		
	4.2	Bearing of lines, type of meridians, whole circle and quadrantal system of bearing, fore and back bearing, reduced bearing		
	4.3	Local attraction, numerical problems		
	4.4	Brief description of Prismatic and Surveyor's compass, basic differences between prismatic and surveyor's compass		
	4.5	Brief description of dip of the needle and magnetic declination, variation in magnetic declination, relation between true bearing and magnetic declination, numerical problems		
	4.6	Methods of traversing with chains and compass plotting of traverse, closing error		
5.0	LEV	ELLING	10	
	5.1	Introduction and definition of common terms		
	5.2	Types of leveling instruments (working principle), leveling staffs		
	5.3	Temporary and permanent adjustment of level		
	5.4	Methods of finding out reduced level		
	5.5	Missing entries in level book		

	5.6	Reciprocal leveling effects of curvature and refraction		
	5.7	Setting out of grade, two peg test		
6.0	CON	TOURING	04	
	6.1	Definition, uses and characteristics of contour		
	6.2	Methods and interpolation of contour		
	6.3	Simple problems like computation of volume from contour maps and their application, setting out of grade from contour		
		map		
7.0	PLA	NE TABLE SURVEY	08	
	7.1	Introduction, accessories of plane table survey		
	7.2	Setting up and orientation of plane table		
	7.3	Methods of plane table surveying-relation, intersection, traversing and resection		
	7.4	The two point and three point problem		
	7.5	Advantages and disadvantages of plane table survey, sources of error		
8.0	FOR	MATIVE EVALUATION	03	
		TOTAL:		45

PRACTICAL

Unit	Top	ic/Sub-Topic	Hrs.	Total hrs.
1.0		NDLING & USES OF INSTRUMENTS FOR DISTANCE ASUREMENT:	02	
	1.1	Handling and uses of chain, tape, cross-staff, optical and other related instruments and accessories		
2.0	CHA	AIN SURVEY:	06	
	2.1	Ranging and measurement of lines by chain and tape		
	2.2	Laying and measurement offset by various methods		
	2.3	Chain survey of an area containing simple details and plotting the survey		
3.0	CON	APASS SURVEY:	06	
	3.1	Reading Fore bearing and back bearing		
	3.2	Measurement of included angle		
	3.3	Compass survey of a plot of and making it closed traverse		
	3.4	Plotting of compass survey after making correction for local attraction		
4.0	LEV	ELLING	10	
	4.1	Reading of staff		
	4.2	Setting up a levelling instrument and finding difference of level by fly levelling		
	4.3	Conducting of longitudinal levelling and cross-section levelling of a proposed road of 500m, taking L-section at 20m		
	4.4	Plotting of survey from field book and level book		
5.0	PLA	IN TABLE SURVEY	06	
	5.1	Preparing survey map by plotting data obtained by using Plane table		
		TOTAL:		30

REFERENCE BOOKS :

Sl. No.	Name of Book	Author	Publishers
1.	Surveying Volume -1	Dr. K.R. Arora	Standard Book House
2.	Surveying Volume -2	Dr. K. R. Arora	Standard Book House
3.	Surveying & Levelling	S.C. Rangwala	Charotar Publishing House
4.	Surveying – Volume 1	S. Duggal	ТМН
5.	Surveying – Volume 2	S. Duggal	ТМН
6.	Surveying & Levelling	N. Bask	ТМН
7.	Surveying, 7/e	Bannister	Pearson
8.	Surveying & Levelling	R. Subramanian	Oxford University Press

STRUCTURAL MECHANICS

L T P 3 1 0

Total marks: 100

Curri. Ref. No.: CE406

Total Contact hrs.: Theory: 45 Tutorial: 15 Theory Class duration: 45 classes of 1hr. or 60 classes of 45 minutes Pre requisite: CE205 Credit: 4 **Theory:** End Term Exam: 75 P.A.: 25

RATIONALE:

Structural Mechanics deals with the internal behaviour of variously loaded solid bodies, such as bars, beams, shafts, plates, and columns, as well as structures and machines that are assemblies of these components. Mechanics of materials focuses primarily on mechanical properties of materials, analysis of stress, strain and evaluation of deformations. The subjects like structural analysis, design of structures as well as machines are based on adequate knowledge and understanding of structural mechanics. Therefore, it is an important basic subject for Diploma students in Civil Engineering.

AIM :

The aim of the subject Structural Mechanics is to develop background preparation of students for taking up Engineering subjects like Theory and Design of Structures mostly through the followings:

- Describe the Mechanical properties of important Engineering materials
- Determine stresses, strains and deformations in elastic bodies of different shapes under different loading conditions for engineering applications.
- Determine load carrying capacity of different types of members.

THEORY: 45 Hours

Unit	Top	ic/Sub-Topic	Hrs.	Total hrs.
1.0	SIM	PLE STRESSES AND STRAINS	3	
	1.1	Elastic constant and relationship		
	1.2	Temperature stresses		
	1.3	Composite section		
2.0	SHE	AR FORCE AND BENDING MOMENT	12	
	2.1	Types of beams		
	2.2	Sign convention		
	2.3	Shear force and bending moment diagram for		
		Cantilever beam		
		Simply supported beam		

		Overhanging beam	
3.0	BENI	DING STRESSES IN BEAMS	6
	3.1	Theory of simple bending	
	3.2	Section modulus for various sections	
	3.3	Flitched beams	
	3.4	Shear stresses in beams	
4.0	COLU	UMN AND STRUT	4
	4.1	Long column and short column	
	4.2	Euler's formula	
	4.3	Rankine's formula	
5.0	DEFI	LECTION OF BEAMS	4
	5.1	Slope and deflection equation for	
		Cantilever beam	
		• Simply supported beam (with point and UDL only)	
6.0	PLAN	NE TRUSSES	6
	6.1	Determinate trusses	
	6.2	Method of joints	
	6.3	Methods of sections	
7.0	TORS	SION	7
	7.1	Basic assumptions for pure torsion, torsion of circular shafts (hollow and solid, no proof) – polar moment of inertia, torsional shearing stress, angle of twist, torsional rigidity.	
8.0	FORM	MATIVE EVALUATION	3
		TOTAL:	

REFERENCE BOOKS :

Sl. No.	Name of Book	Author	Publishers
1.	Elements of Strength of Material	S. P. Timoshenko & D. H. Young	EWP Pvt. Ltd.
2.	Engineering Mechanics of Solids	E. P. Popov	Pearson Education
3.	Strength of Materials	R. Subramanian	Oxford University Press
4.	Strength of Materials	S. S. Bhavikatti	Vikas Publishing House Pvt. Ltd.
5.	Strength of Material	A. Pytel & F.L. Singer	AWL Inc.
6.	Fundamentals of Strength of Material	Nag & Chandra	WIE
7.	Problems & Solutions in Strength of Material	S. C. Singhal	CBS Publishers
8.	Strength of Materials	Dutta, A. K.	New Age International (P) Ltd.
9.	A Text Book of Strength of Material	UC Jindal	Asian Books Pvt. Ltd.
10.	Statics and Strength of Material	UC Jindal	Asian Books Pvt. Ltd.
11.	Strength of Materials (Theory and Problems)	R. Subramanian	Oxford University Press
12.	Fundamentals of Strength of Materials	P. Chandramouli	PHI Learning

GEO-TECHNICAL ENGINEERING – I

L T P 3 1 2

Total marks: 150

Total Contact hrs.: Theory: 45 Tutorial: 15 Practical: 30 Theory Class duration: 45 classes of 1 hr. or 60 classes of 45 minutes Pre requisite: None Credit: 5 Curri. Ref. No.: CE407

Theory: End Term Exam: 75 P.A.: 25 *Practical:* End Term Exam: 25 I.A : 25

RATIONALE:

The knowledge and skills of Geo-Technical Engineering is important as any other subject of Civil Engineering. Practical works in Geo-Technical Engineering are equally important. The theory together with practices of this subject will definitely help the Practicing Civil Engineers in Civil Engineering construction works, specially in the design and construction of building foundation and other structures.

AIM:

To develop fundamental concept of Geo-technical Engineering, particularly knowledge and skills of (a) Classification of soils and soil structure (b) Soil mass and fundamental concepts and principles (c) Permeability, seepage, compaction, consolidation and shear strength of soils.

UNIT	TOPIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	INTRODUCTION	2	
	1.1 Definition of soil, formation of soil, residual and transported soil		
2.0	INDEX PROPERTIES	7	
	2.1 Preliminary definition of water content, density, specific gravity, void ratio, degree of saturation, density index, numerical problems		
	2.2 Determination of water content, specific gravity and particle size distribution. Numerical problems		
	2.3 Definition, relation and determination of liquid limit, plastic and shrinkage limit, Application of consistency limit. Numerical problems		
3.0	CLASSIFICATION OF SOIL	6	
	3.1 Identification and description of coarse and fine grained soils		

	3.2	Particle size classification , textual classification, HRB classification, unified soil classification , IS classification		
4.0	SOII	L STRUCTURE	2	
	4.1	Particle arrangement in course grained, clay and composite soil		
5.0	PER	MEABILITY	4	
	5.1	Definition of head, gradient		
	5.2	Darcy's law, Validity of Darcy's law		
	5.3			
	5.4	Factors effecting permeability		
6.0		PAGE ANALYSIS	4	
	6.1	Definition and concept of seepage flow and flow net		
7.0	COM	IPACTION 1 0	5	
	7.1	Definition, maximum dry density, optimum moisture		
		content		
	7.2	Factors effecting compaction		
	7.3	Light and heavy compaction test as per IS specification		
	7.4	Field compaction methods		
8.0	CON	SOLIDATION	4	
	8.1	Brief concept of compressibility and consolidation		
	8.2	One dimensional consolidation test		
9.0	SHE	AR STRENGTH	8	
	9.1	Definition of shear and shear parameters		
	9.2	Mohr circle, unconfined compression test, direct shear		
		test, UU test, numerical problems		
	9.3	Introduction to triaxial tests		
10.0	FOR	MATIVE EVALUATION	3	
		TOTAL:		45

REFERENCE BOOKS :

Sl. No.	Name of Book	Author	Publishers	
1.	Principles of Geotechnical Engineering	B. M. Das	Thomson	
2.	Basic and Applied Soil Mechanics	Gopal, Ranjan	New Age International (P) Ltd.	
3.	Soil Mechanics and Foundations, 2ed, w/CD	Budhu	Wiley India	
4.	Soil Mechanics SI Version	Lambe	Wiley India	
5.	Soil Mechanics & Foundation Engineering	Raj	Pearson	
6.	Soil Mechanics & Foundations	B. C. Punmia, Ashok Jain & Arun Jain	Laxmi Publication	
7.	Basic Soil Mechanics & Foundation	Alam Singh	CBS Publishers	
8.	Soil Mechanics & Foundation Engineering	VNS Murthy	CBS Publishers	

GEO-TECHNICAL ENGINEERING LABORATORY

List of Experiments / Tests

- 1. To determine the water content and specific gravity of a given soil sample.
- 2. To determine the field density of a soil using core-cutter and sand replacement method.
- 3. To determine the grain size distribution of a cohesionless soil sample by Mechanical Analysis.
- 4. To determine the grain size distribution of a fine grain soil sample by Hydrometer analysis.
- 5. To determine of the consistency limits of a given soil sample by using Casagrande's liquid limit device, cone penetrometer.
- 6. To determine the coefficient of permeability: Constant head and variable head method.
- 7. To determine the maximum dry density and optimum moisture content by light and heavy compaction.
- 8. Unconfined compression test, direct shear test
- 9. Demonstration Test in the Laboratory One dimensional consolidation test Triaxial test

THEORY OF STRUCTURES

L T P 3 1 0

Total marks: 100

Curri. Ref. No.: CE408

Total Contact hrs.: Theory: 45 Tutorial: 30 Theory Class duration: 45 classes of 1 hr. or 60 classes of 45 minutes Pre requisite: 406 Credit: 4 *Theory:* End Term Exam: 75 P.A.: 25 *Practical:* End Term Exam : Nil I.A : Nil

RATIONALE :

Theory of structures is a very important subject for diploma holders in Civil Engineering. Many of them are entrusted with the responsibility to supervise constructions, make minor remedial changes in maintenance work, analyze simple structures etc. An adequate knowledge of behaviour of structures is very essential for developing self-confidence among the diploma engineers for delivering quality service of work. An understanding of 'why' part of structural behaviour and failures enables them to give adequate comparative weightage of their attention to different components of construction supervision jobs.

AIM:

The course content of 'Theory of Structures' aims at knowledge, concepts, and understanding of principles and behaviour of Civil Engineering Structures with related assumptions but without going into much theoretical derivation.

Unit	Topic/Sub-Topic		Hrs.	Total hrs.
1.0	BENDING AND SHEAR STRESSES IN BEAMS:		8	
	1.1	Loads, beams, shearing forces, and bending moment -		
		Explain types of loads, shearing force and bending		
		moment, distinguish between simply supported and		
		cantilever beams.		
	1.2	Exercise Calculate shearing forces and bending		
		moments and draw the diagrams.		
	1.3	Application to steel and timber beams Calculate		
		bending stresses in steel & timber beams, evaluate		
		moment of resistance, solve numerical problems by		
		applying the equations of bending, draw distribution of		
		bending stress.		
	1.4	Flitched beams - solve numerical problems on finding		
		safe load of flitched beams, draw distribution of stresses,		
		and find the moment of resistance given sections.		
	1.5	Shear stress in beams-calculate shear stresses at		
		different layers of a given beam, draw the distribution of		
		shear stress for different structural sections (only		
		application of formula).		

2.0 FRAMED STRUCTURES :

- Introduction: Define and explain statically determinate 2.1 frames, distinguish between beams and determinate structures, state the important uses of framed determinate frames.
- 2.2 Applications -- Find the forces in the members of simple trusses by methods of joint, section.
- 3.0 **DEFLECTION OF BEAMS:**
 - Introduction: Explain why the beams deflect. Explain 3.1 why the knowledge of beam deflection is important from the structural point of view. Shape and nature of elastic curve
 - 3.2 Formulae and their applications: State and explain the formulae for deflection and rotation of simply supported beams and cantilevers under concentrated and uniformly distributed loads and end moments. Principal of superposition to solve propped cantilever beams for reactions, bending moment and shearing force diagrams.
 - 3.3 Problems on simply supported and cantilever beams for determination of slope and deflection under different types of loadings by integration method (Macaulay's method).
 - Moment area method, conjugate beam method basic 3.4 principles and simple problems.

4.0 STRESSES AND STRAINS :

- 4.1 Principal stresses and Principal planes: Explain the occurrence and concept of normal and tangential stresses, define & explain the concept of principal stresses and principal planes and their orientation. State and explain the formulae with assumptions (no proof) for major and minor principal stresses and their orientation. Solve numerical problems.
- 4.2 Stresses on a given plane: State and explain formulae (with no proof) for shear and normal stress components on any inclined plane. Solve numerical problems.
- 4.3 Use of Mohr's circle: Explain with assumptions the alternative graphical solution procedure (sketch only) by using Mohr's circle without proof. Supplement the solution of numerical problems by Mohr's circle method.
- INTRODUCTION TO INDETERMINATE STRUCTURES Propped cantilever, fixed beams, continuous beams, 5.1 nature of bending moment and shear force diagrams
 - 5.2 Portal frames, nature of bending moment and shear force diagrams
 - 6.3 Introduction to slope deflection and moment distribution methods, simple problems
- 6.0 FORMATIVE EVALUATION

5.0

TOTAL

45

12

8

6

8

3

Sl. No.	Name of Book	Author	Publishers
1.	Strength of Material	Subrmaniam	Oxford
2.	Basic Structural Analysis	C. S. Reddy	ТМН
3.	Intermediate Structural Analysis	C. K. Wang	McGraw Hill
4.	Theory of Structure	S. Ramamrutham	
5.	Structural Analysis	Thandavamurthy	Oxford
6.	Structural Analysis	Bhavikatti	Vikas Publishing House
7.	Indeterminate Structures	Jindal	S. Chand & Company

WATER & WASTE WATER ENGINEERING (Theory)

L T P 3 1 2

Total Contact hrs.:

Total marks: 150

Theory: 45, Tutorial: 15 Practical: 30 **Theory Class duration:** 60 classes of 1 hr. or 80 classes of 45 minutes **Pre requisite: CE403 Credit: 5** Theory:

Curri. Ref. No.: CE409

End Term Exam: 75 P.A.: 25 **Practical:** End Term Exam: 25 I.A: 25

RATIONALE:

Providing potable water, one of the basic necessities of life, to a community is an important activity of a civil engineer. Knowledge and skill in the field of water supply engineering and waste water disposal is essential for maintaining the health and sanitation of a community.

AIM:

The course content of Water Supply & Sanitary Engineering has been designed to provide adequate information to develop competency in a learner to-

- 1. Estimate the water requirements of a community
- 2. Select suitable source for a water supply project
- 3. Analyze the quality of water to determine its suitability for drinking
- 4. Identify the appropriate treatment processes required for making the water potable
- 5. Construct, operate and maintain the various units of water treatment plants
- 6. Lay out the necessary arrangement of pipe systems and structures for conveying water from the source to the treatment plant and for supply of treated water from the treatment plant to the consumer inside the building.
- 7. Estimate the volume of various types of sewage from a community
- 8. Layout the necessary sewerage system along with the appurtenances for collection and disposal of sewage
- 9. Analyze the sewage characteristics to determine the degree of treatment required for disposal according to government standards
- 10. Identify the appropriate treatment processes required to make the sewage fit for disposal
- 11. Construct, operate and maintain the various units of waste water treatment plants
- 12. Implement rural water supply and sanitation projects

COURSE CONTENT:

WATER SUPPLY ENGINEERING

UNIT	TOF	PIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	INT	RODUCTION	01	
	1.1	History of protected water supply		
	1.2	Various considerations in the preparations of a water supply		
		project		
2.0	QUA	NTITY OF WATER	02	
	2.1	Per capita demand		
	2.2	Design period of water supply project		
	2.3	Factors affecting various demands		
	2.4	Population forecast, problems		
3.0	SOU	RCES AND COLLECTION OF WATER	06	
	3.1	Surface sources		
	3.2	Ground water		
	3.3	Intake works		
	3.4	Wells: Types and description		
	3.5	Flow equation (no deduction), numerical problem		
4.0	QUA	ALITY OF WATER	04	
	4.1	Impurities in water: physical, chemical and bacteriogical		
	4.2	Drinking water standards		
	4.3	Detection of impurities		
	4.4	p ^H -value, Turbidity		
5.0	TRE	ATMENT OF WATER	08	
	5.1	Sedimentation		
	5.2	Sedimentation with Coagulation		
	5.3	Filtration (Slow sand and rapid sand filter, pressure filter)		
	5.4	Disinfections of water, breakpoint, Chlorination		
	5.5	Miscellaneous methods: Aeration, Iron, and Manganese		
		removal		
	5.6	Water softening process		
	5.7	Layout of water treatment plant		

WASTE WATER ENGINEERING

UNIT	TOP	IC/SUB-TOPIC	Hrs.	Total hrs.
6.0	INTI	RODUCTION:	01	
	6.1	Purpose and principles of sanitation.		
	6.2	Conservancy system and water carriage system		
	6.3	Classification of Sewerage systems: Combined, separate and partially separate system		
7.0	QUA	NTITY OF SEWAGE & DESIGN OF SEWERS:	04	
	7.1	Flow- types and variation		
	7.2	Shape and size of sewers, gradient, velocities and principles		
		of design, problems		
8.0	SEW	ER APPURTENANCES:	02	
	8.1	Man holes and lamp holes		
	8.2	Inlet grease and oil traps		

	8.3	Storm regulators and inverted siphons	
	8.4	Lifting of sewage necessity and plumbing	
9.0	СНА	RACTERISTICS OF SEWAGE:	03
	9.1	Physical and biological	
	9.2	Decomposition of sewage	
	9.3	B.O.D. test, problems	
10.0	SEW	AGE DISPOSAL	02
	10.1	Dilution method, specification for disposal	
	10.2	Self purification of river, D.O sag curve (only description)	
11.0	SEW	AGE TREATMENT METHOD:	04
	11.1	Flow diagram of a conventional sewage treatment plant	
	11.2	Tricking filters — Sketch and description only	
	11.3	Activated sludge process — Sketch and description only	
	11.4	Oxidation ponds and Oxidation ditch - Sketch and	
		description only	
12.0	SLUI	DGE DISPOSAL	03
	12.1	Sludge digration tanks and Sludge drying beds	
	12.2	Septic tank — description and design	
13.0	WAT	ER SUPPLY AND DRAINAGE IN BUILDINGS	02
	13.1	Storage Tanks	
	13.2	Principles of Design of water supply in buildings	
	13.3	Traps	
	13.4	Sanitary Fittings	
	13.5	Systems of Drainage	
14.0	FOR	MATIVE EVALUATION	03
		TOTAL:	

REFERENCE BOOKS:

Sl. No.	Name of Book	Author	Publishers
1.	Water Supply and Sanitary Engineering	S.C. Rangwala	Charotar Publishing House
2.	Water Supply Engineering Volume - 1	P. N. Modi	Standard Book House
3.	Waste Water Treatment and Sewage Disposal	M.N. Moulik	Standard Book House
4.	Sewage Treatment & Disposal And Water Supply Engineering	P. N. Modi	Standard Book House
5.	Water Supply Engineering	B. C. Punmia, Ashok Jain & Arun Jain	Laxmi Publication
6.	Waste Water Engineering	B. C. Punmia, Ashok Jain & Arun Jain	Laxmi Publication
7.	CPHEEO Manual-Water Supply		Ministry of Urban; Development, Govt. of India
8.	CPHEEO Manual-Sewage		Ministry of Urban Sewage Treatment Development, Govt. of India

WATER & WASTE WATER ENGINEERING (Practical)

RATIONALE:

Laboratory practice is an essential component for study of the subject water supply & sanitary engineering. Data obtained from tests conducted in the laboratory are the basis of decision-making process adopted in the field. The course work includes the tests for determination of essential parameters for assessing the quality of water and characteristics of waste water.

AIM:

The course content of water supply & sanitary engineering practical has been designed to provide adequate hands-on-experience to develop the competency in a learner to -

- 1. Assess the suitability of a water sample for drinking water use
- 2. Determine the chemical dosage requirements in various stages of water treatment process
- 3. Assess the characteristics of a waste water sample.

COURSE CONTENT:

The students will perform the following tests/exercises to determine different parameters of given samples of water and waste water.

Unit	Topic/Sub-Topic	Hrs.	Total hrs.
1.0	Collection and Sampling of sewage and wastewater		
2.0	Determination of Alkalinity of water sample		
3.0	Determination of pH value of water and sewage sample		
4.0	Determination of turbidity of a water sample		
5.0	Determination of iron in water sample		
6.0	Determination of optimum value of coagulant dose (Jar test)		
7.0	Determination of solids in sewage sample		
8.0	Determination of sludge volume index (SVI)		
9.0	Determination of Bio-chemical Oxygen Demand (BOD) of a waste		
	water sample		
	TOTAL:		30

BUILDING CONSTRUCTION

L T P 3 1 0

Total marks: 100

Curri. Ref. No.: CE410

Total Contact hrs.: Theory: 45 Tutorial: 15 Theory Class duration: 60 classes of 1 hr. or 90 classes of 45 minutes Pre requisite: Nil Credit: 4 **Theory:** End Term Exam: 75 P.A.: 25

RATIONALE:

Many diploma holders in Civil Engineering are expected to supervise construction of buildings and other structures. To perform the above task, it is essential that students should have knowledge of various components of buildings like foundations, walls, roofs, staircases, floors etc., and their constructional details. Therefore, the subject of building construction is very important for Civil Engineering diploma holders.

AIM:

The aim of the subject of building construction is mostly to impart knowledge of different components of a building and their construction details to the diploma students of Civil Engineering.

UNIT	TO	PIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	INT	RODUCTION	2	
	1.1	Classification of building based on occupancy		
	1.2	Different parts of building and their requirements		
2.0	SITI	E INVESTICATION	3	
	2.1	Object of site investigation (exploration)		
	2.2	Method of site investigation. Brief description of site		
		reconnaissance (Inspection of site), boring methods,		
		sampling, samplers		
3.0	FOU	JNDATIONS	6	
	3.1	Definitions and purpose of foundation		
	3.2	Essential requirements of foundations		
	3.3	Type of foundation: Shallow and deep foundations and their		
		classifications		
	3.4	Shallow foundation: constructional and details of spread		
		foundations for walls, isolated footing, combined footings,		
		raft foundation (with sketches)		
	3.5	Deep foundations-pile foundation-types, classification and		
		their relative merits and demerits, pier or well foundations.		
4.0	BRI	CK MASONRY	5	
	4.1	Definition: Materials used in brick masonry, general		
		principles to be observed in brick masonry		

	4.2 4.3	Types of bonds, details with sketches Brick masonry construction	
5.0		NE MASONRY	3
	5.1	Uses, comparison between stone masonry and brick	
		masonry	
	5.2	Materials used in stone masonry	
	5.3	•	
	5.4	Types of stone masonry-Rubble masonry and ashlars	
		masonry, their description with classification	
6.0	PAR	TITION WALLS & CAVITY WALLS	2
	6.1	Definition of partition and cavity wall	
	6.2	Advantage of cavity wall	
	6.3	Types of partition walls-Brief description of brick partitions,	
		concrete partitions only	
7.0		HES AND LINTELS	2
	7.1	Meaning and use of arches and lintels	
	7.2	Technical terms in arches and lintel	
	7.3		
8.0		ORS AND WINDOWS	3
	8.1	Glossary of terms used in doors and windows	
	8.2	Door-use, types of doors(description with sketches)	
	8.3	Window-use, types of windows (shallow foundations)	_
9.0		IP PROOFING	2
	9.1	Definition of dampness, defects of dampness, causes of	
	• •	Dampness	
	9.2	Sources of dampness, prevention of dampness	
10.0	9.3	Materials used for damp proofing	4
10.0	FLO		4
	10.1	Ground floor, types of flooring, concrete flooring Mosaic	
	10.2	flooring, terrazzo flooring, marble flooring	
11.0	10.2 STAI	Selection of a suitable type of floor material	4
11.0		Definition, location of stairs	4
	11.1	Common technical terms used in stairs construction	
	11.2	Requirements of good stairs	
	11.5	Classification of stairs (brief description with diagram)	
12.0	ROC		2
12.0	12.1	Types of roofs, description of sloping roofs, flat roofs	2
	12.1	King post and Queen post truss	
13.0		FACE FINISH	2
15.0	13.1	Plastering –definition, materials used for plastering,	-
	10.11	application of plaster, defects in Plastering	
	13.2	Pointing-definition, types of pointing, preparation of surface	
		Mortar used	
14.0	CON	ISTRUCTION BY TIMBER & BAMBOO	2
-	14.1	Brief study on available raw materials	
	14.2	•	
		available materials (specially timber and bamboo)	
15.0	FOR	MATIVE EVALUATION '	3
		TOTAL:	

Sl. No.	Name of Book	Author	Publishers
1.	Building Construction	Varghese	PHI Learning
2.	Building Construction	B. C. Punmia, Ashok Jain & Arun Jain	Laxmi Publication
3.	Building Construction Details Practical Drawing	Hans Banz	CBS Publishers
4.	Building Construction Drafting & Design	John Molnar, P. E.	CBS Publishers
5.	Civil Engineering Building Construction Handbook	Ahuja & Virdhi	Standard Book House
6.	Building Construction And Materials	Gurcharan Singh	Standard Book House
7.	Building Construction And Materials	Gurcharan Singh	Standard Book House

APPLIED TECHNOLOGY COURSES

HIGHWAY & TRANSPORTATION ENGINEERING

L T P 3 1 2

Total marks: 150

Total Contact hrs.: Theory: 45 Tutorial: 15 Practical: 30 Theory Class duration: 60 classes of 1 hr. or 90 classes of 45 minutes Pre requisite: CE 407 Credit: 5 Curri. Ref. No.: CE501

Theory: End Term Exam: 75 P.A.: 25 *Practical:* End Term Exam: 25 I.A: 25

RATIONALE:

The subject of highway and transportation engineering is very important as it deals essentially with road transportation. It is essential for the students to get a through input into the different components of road constructions, maintenance, drainage and related traffic engineering.

AIM:

To develop knowledge and skill in highway development, highway plans and administration, highway economics and financing, traffic engineering, bituminous materials, bituminous surface treatment, carpet coat, road-mix and intermediate type bituminous plant mix surfaces, high type bituminous pavement and their construction.

Unit	Topic/Sub-Topic	Hrs.	Total hrs.
1.0	INTRODUCTION	6	
	1.1 Introduction Transportation Engineering, different types of		
	transportation their components and relative assessment		
	1.2 Introduction to Highways, classification of highway in India,		
	road development plans, roles of IRC, CRRI, BRO etc.		
2.0	PLANNING OF HIGHWAYS	4	
	2.1 Road alignment, formation, longitudinal and cross sectional		
	components of different highways		
	2.2 Preparation of reports including maps, land acquisition etc.		
4.0	GEOMETRIC DESIGN OF HIGHWAYS	10	
	4.1 Vehicular characteristics, camber, sight distance, horizontal		
	alignment (super-elevation, widening, transition at curves),		
	gradient and vertical curve, numerical problems		
5.0	HIGHWAY DRAINAGE	2	
	5.1 Surface drainage, numerical problem		
	5.2 Sub-surface drainage, types and characteristics		
6.0	TYPES OF PAVEMENTS	2	
	6.1 Flexible and rigid pavements, definition characteristics and		
	differences		
7.0	PAVEMENT MATERIALS & CONSTRUCTION	6	
	7.1 Different types of aggregate material and testing		

	7.2	Bitumen – types, testing and bituminous mix		
	7.3	Different construction methods: Earth and gravel road,		
		WBM, bituminous pavements and concrete pavements		
	7.4	California bearing ratio (CBR) test		
8.0	INTR	ODUCTION TO TRAFFIC ENGINEERING	2	
	8.1	Definition, road signs and signals		
9.0	BRID	OGE	10	
	9.1	Introduction to bridge engineering		
	9.2	Classification of bridge		
	9.3	Types of loading of road bridges as per IRC recommendation		
	9.4	Bridge foundations and bearings		
	9.5	Bridge protection works		
10.0	FOR	MATIVE EVALUATION	3	
		TOTAL:		45

TRANSPORTATION ENGINEERING LABORATORY

UNI	T TO	PIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	AG	GREGATES		
	1.1	Determination of crushing value of given road aggregate		
	1.2	Determination of aggregate impact value		
	1.3	Determination of Los Angels Abrasion value		
	1.4	Determination of Flakiness index and Elongation Index		
	1.5	Specific gravity of aggregate		
	1.6	CBR (California Bearing Ratio) Test		
2.0	BIT	UMEN		
	2.1	Penetration value of Bitumen		
	2.2	Viscosity value of Bitumen		
	2.3	Ductility value of Bitumen		
	2.4	Flash Point and fire point of Bitumen		
	2.5	Softening point of Bitumen		
3.0	Mar	shal stability test for bituminous mix design		
		ТОТ	'AL:	30

Sl. No.	Name of Book	Author	Publishers
1.	Highway Engineering	Khanna & Justo	Nemchand Brothers
2.	Transportation Engineering — An Introduction, 3 rd ed.	Khisty & Lall	PHI Learning
3.	Principles of Transportation Engineering	Chakroborty & Das	PHI Learning
4.	Transportation Engineering and Planning, 3 rd ed.	Papacostas & Prevedouros	PHI Learning
5.	Highway Engineering	S.C. Rangwala	Charotar Publishing House
6.	Highway Engineering	T. D. Ahuja	Standard Book House
7.	Laboratory Manual in Highway Engineering	Duggal, Ajay K.	New Age International (P) Ltd.
8.	Principle of Traffic and Highway Engineering	G. Nicholas J.	Cengage

GEO-TECHNICAL ENGINEERING – II

L T P 3 1 0

Total marks: 100

Curri. Ref. No.: CE502

Total Contact hrs.: Theory: 45 Tutorial: 15 Theory Class duration: 45 classes of 1 hr. or 60 classes of 45 minutes Pre requisite: C407 Credit: 4 **Theory:** End Term Exam: 75 P.A.: 25

RATIONALE:

The knowledge and skills of Geo-Technical Engineering is very important subject of Civil Engineering. Practical works in Geo-Technical Engineering are equally important. The theory together with practices of this subject will definitely help the Practicing Civil Engineers in Civil Engineering Construction Works, specially in the design and construction of building foundation.

AIM:

Geo-technical Engineering II aims at imparting basic knowledge on Earth Pressure Theories, slope stability, soil exploration, bearing capacity and settlement analysis of shallow foundations, deep foundations and introduction to soil improvement and stabilization techniques.

UNIT	TOP	C/SUB-TOPIC	Hrs.	Total hrs.
1.0	EART	'H PRESSURE THEORIES	8	
	1.1	Rankine & Colomb's Earth Pressure theories		
	1.2	Determination of Earth Pressure on retaining wall by		
		applying Rankine's Theory, simple problems		
	1.3	Statbility of retaining walls: Fundamental consideration		
		(no derivation)		
2.0	STAB	ILITY OF SLOPES	4	
	2.1	Introduction, definition and types of slope		
	2.2	Slope protection measures		
3.0	SHAL	LOW FOUNDATIONS	12	
	3.1	Types and definition		
	3.2	Bearing capacity analysis of isolated shallow foundation		
		by Terzaghi's and IS code method (IS 6403-1981)		
	3.3	Settlement: Immediate and consolidation settlement,		
		estimation of immediate and consolidation settlement of		
		isolated footings (IS 8009-part I), simple problems		
4.0	SOIL	EXPLORATION & SITE INVESTIGATION	6	

4.1	Methods, undisturbed and disturbed samples, sampling
	and samplers

- 4.2 Standard penetration test, plate load test (demonstration of tests)
- 5.0 DEEP FOUNDATION
 - 5.1 Types: Pile foundation, Pier, Well foundation
 - 5.2 Determination of pile capacity by IS code method (IS 2911)
- 6.0 INTRODUCTION TO GROUND IMPROVEMENT & 6 SOIL STABILIZATION TECHNIQUES
 - 6.1 Different methods: Pre loading, sand drains, stone columns, grouting, earth reinforcement and stabilization by using admixtures (applicability and fundamental considerations only)
- 7.0 FORMATIVE EVALUATION

45

6

3

TOTAL:

Sl. No.	Name of Book	Author	Publishers
1.	Principles of Foundation Engineering	B. M. Das	Thomson
2.	Soil Mechanics and Foundations, 2ed, w/CD	Budhu	Wiley India
3.	Soil Mechanics SI Version	Lambe	Wiley India
4.	Soil Mechanics & Foundation Engineering	Raj	Pearson
5.	Soil Mechanics & Foundations	B. C. Punmia, Ashok Jain & Arun Jain	Laxmi Publication
6.	Basic Soil Mechanics & Foundation	Alam Singh	CBS Publishers
7.	Soil Mechanics & Foundation Engineering	VNS Murthy	CBS Publishers
8.	Relevant IS Codes: IS 6403, IS 8009, IS 1892, IS 2911		Bureau of Indian Standards

WATER RESOURCE ENGINEERING

L T P 3 1 0

Total marks: 100

Curri. Ref. No.: CE503

Total Contact hrs.: Theory: 45 Tutorial: 15 Theory Class duration: 45 classes of 1 hr. or 60 classes of 45 minutes Pre requisite: CE402 Credit: 4 **Theory:** End Term Exam: 75 P.A.: 25

RATIONALE:

Many diploma holders in civil engineering supervise the construction or perform the maintenance of canals, head-works, river training works, cross drainage works, regulatory and other works. Some of diploma holders are also engaged for preventing water logging and irrigation by tube-wells.

Aim:

This subject Water Resource Engineering aims imparting knowledge regarding hydrology, flow irrigation - storage and distribution system, constructional features of head works, river training works, cross drainage works, causes and prevention of water logging and construction of tube-wells.

UNIT	TOPIC/S	SUB-TOPIC	Hrs.	Total hrs.
1.0	INTROD	UCTION:	2	
		Emition of irrigation, necessity of irrigation, advantages of		
	C C	gation, types of irrigation-brief description of each type		
2.0		IPTIVE USE OF WATER	3	
		ter requirements of crops-delta, duty and base period-their tionship and associated problems		
	2.2 Det ratio	Einition of common terms: Kor depth, Kor period, crop o, outlet factor capacity factor, cumec day. GGA, CCA, ensity of irrigation, root-zone-depth, crop rotation		
3.0	HYDROL		8	
	pregau	portance of hydrological cycle, measurement of cipitation by rain-gauges, automatic and non automatic ges, types of precipitation, computation of average rainfall r a basin		
		noff, factors affecting runoff, characteristics of catchments a, rainfall and runoff relationship		
	3.3 Mea Con	asurement of river discharge with current meter. mputation of maximum flood discharge from flood mark, ves and Dicken's formulae, Hydrographs		
4.0	•	D WATER	3	

	4.1 Shallow wells, deep wells, construction method of tube well	
	and yield from wells	
	4.2 Centrifugal and air lift pumps for lifting water	
5.0	WEIRS	4
	5.1 Component parts of a diversion head works and their	
	functions, selection of site of a head work	
	5.2 Weir section showing its different components and function	
	of barrage	
6.0	DAMS	7
	6.1 Selection of site of a gravity dam, sketch of a gravity dam, showing sluice gates, galleries cut-off etc.	
	6.2 Method of construction of earth dams, sketch of an earthen	
	dam showing stone pitching, rock toe, core wall, under	
	drainages etc, section of a pipe outlet	
	6.3 Failures of earth dams, protection against failures	
7.0	CANAL & APPURTENANCES	6
	7.1 Canals-classification of canal, contour canal, ridge canal and	
	watershed canals	
	7.2 Purpose of canal lining, types of linings	
	7.3 Cross-drainage works, definition and different methods of	
	cross-drainage works with sketches	
8.0	WATER LOGGING	2
	8.1 Water logging –definition of the term, its ill effects and	
	reclaimation of water logged areas	
9.0	RIVER TRAINING WORKS	3
	9.1 Necessity of river training, type of river training works,	
	functions of guide banks, marginal embankment cutt-off,	
	spurs and groynes. Sketches of guide banks, spurs and	
	groynes	
10.0	SMALL HYDROPOWER PROJECTS	4
	10.1 Feasibility study and site selection	
	10.2 Components, typical flow diagram	
11.0	FORMATIVE EVALUATION	3
	TOTAL	

REFERENCES:

Sl. No.	Name of Book	Author	Publishers
1.	Irrigation Water Resources And Water Power Engineering	P. N. Modi	Standard Book House
2.	Irrigation & Water Power Engineering	B. C. Punmia, Pande, B. B, Ashok Jain & Arun Jain	Laxmi Publication
3.	Irrigation Engineering	N. Bask	ТМН
4.	Principles and Practice of Irrigation Engineering	Sharma	PHI
5.	Irrigation and Hydraulic Structures	S. K. Garg	Khanna Publishers
6.	Irrigation and Water Power Engineering	Das & Saikia	PHI Learning
7.	Irrigation and Water Power Engineering	Das & Saikia	PHI Learning
8.			

ESTIMATING - I

L T P 2 2 0

Total marks: 100

Curri. Ref. No.: CE504

Total Contact hrs.: Theory: 30 Tutorial: 30 Theory Class duration: 30 classes of 1hr. or 40 classes of 45 minutes Pre requisite: Nil Credit: 4 **Theory:** End Term Exam: 75 P.A.: 25

RATIONALE:

The subject of estimating is very important for the diploma holders in Civil Engineering. In order to construct any item, pertaining to Civil Engineering, one should have a knowledge of resource required for the works as also the money required for completion of the job.

AIM:

To identify the schedule of works and make a correct estimate.

THEORY:

UNIT	TOPIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	INTRODUCTION	3	
	1.1 What is estimating? Purpose of estimating		
	1.2 Unit of measurement and rate of payment		
2.0	TYPES OF ESTIMATES	3	
	2.1 Plinth area estimate, carpet area estimate, cube rate estimate,		
	revised estimate, supplementary estimate, repair estimate		
	2.2 Bill of quantities, building cost index		
3.0	EARTH WORK	2	
	3.1 Method of calculating quantity of earth, mid-sectional area		
	method, prismodal formula method, lead and lift , tabular		
	forms for each mode of calculating earth-work quantity		
4.0	MASONRY WORK	3	
	4.1 Unit of measurement and method of estimating brick		
	masonry works and R.B. works		
5.0	CONCRETE WORK	2	
	5.1 Unit of measurement and method of estimating mass		
	concrete works, shuttering works in RCC slab, RCC column		
	and foundation		
6.0	FLOORING	2	
	6.1 Unit of measurement, method of estimating floor, floor		
	finishing and DPC		
7.0	FINISHING AND DECORATING	2	

	7.1	Unit of measurement and method of estimating plastering and pointing		
	7.2	Method of estimating of white washing, colour washing and		
8.0	SANI	painting TTARY AND PLUMBING	3	
	8.1	Unit of measurement and method of estimating sanitary fittings and plumbing work in residential buildings		
	8.2	Estimate of septic tank		
9.0	STEE	ELWORK	7	
	9.1	Unit of measurement and method of estimating of simple steel structure		
10.0	FOR	MATIVE EVALUATION	3	
11.0	TUT	ORIAL		30
	11.1	To estimate the volume of earthwork required for excavation and filling of the trench for road construction		
	11.2	To prepare an estimate for sanitary & plumbing as required in a building.		
	11.3	To prepare an estimate for timber works for a roof trussed building.		
	11.4	To prepare an estimate for flooring items including finishing and decorating works		
	11.5	To prepare an estimate of a double storied R.C. building		
		TOTAL:		60

NOTE: - The above exercises will be given to the students as specified guided project work. They will be supplied with necessary drawings and data. These exercises should preferably be run parallel with the theoretical instruction.

Sl. No.	Name of Book	Author	Publishers
1.	Estimating and Costing in Civil Engineering: Theory & Practice	B.N. Dutta	Sangam Books
2.	Civil Engineering Estimating & Costing	Vazirani & Chandola	Khanna Publishers
3.	Estimating, Costing and Specification	M. Chakraborty	
4.	Estimation Costing & Valuation	S. C. Rangwala	Charotar Publishing House Pvt. Ltd
5.	Estimating for Civil Engineers	D. V. Varshney	CBS Publishers

ESTIMATING - II

L T P 2 2 0

Total marks: 100

Curri. Ref. No.: CE505

Total Contact hrs.: Theory: 30 Tutorial: 30 *Theory Class duration:* 15 classes of 1 hr. or 20 classes of 45 minutes *Pre requisite: C504 Credit: 4* **Theory:** End Term Exam: 75 P.A.: 25

RATIONALE:

The subject of estimating is very important, as the students are required to know the various aspects of rate analysis, types of estimates, details of specifications for arriving at a correct estimate of a construction unit.

AIM:

The aim of the subject is to acquaint the students with the methods of estimating and to explain the reason behind.

THEORY

UNIT	TOPIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	ROAD WORKS	02	
	1.1 Unit of measurement and method of estimating various items of work		
2.0	RATE ANALYSIS	06	
	1.1 Analysis of rates of brick work, plain cement concrete, RCC		
	work, doors and windows, plastering, cement concrete floor,		
	white washing, centering and shuttering, damp proof course coverage, carriage of materials, earth work for foundation and		
	for cutting and filling of trenches		
3.0	GENERAL AND DETAILED SPECIFICATION	04	
	2.1 Specification of earthwork in excavation first class brick work,		
	wood work, work in doors and windows, CGI sheet and AC		
	sheet roofing, construction of road and pavement material,		
	construction of cement concrete floor, plastering, white		
	washing, plain concrete, RCC, cement mortar, mosaic floor, lime concrete in roof terracing, centering shuttering		
4.0	INTRODUCTION TO DEPARTMENTAL EXECUTION OF	07	
	WORK		
	4.1 Contracts, contract agreement, item rate contract, lump sum		
	contract, labour contract		
	4.2 Explanation of various terms — Administrative approval,		

42

technical sanction, contingencies, budget, tender, earnest money, security deposit, running bill, final bill

- 4.3 Measurement Book: Use, procedure of making entries of measurement of works, supply of material, labour employed
- 4.4 Master Roll

5.0 EXERCISES

- 5.1 To estimate volume of earthwork required for excavation and filing of trench for road construction
- 5.2 Irrigation canal:- partly cutting and partly banking
- 5.3 To prepare a detailed estimate of a double storied RCC framed building with verandah, latrine, septic tank, fencing wall with decorative finish (including plumbing sanitary, steel and timber works.)
- 6.0 FORMATIVE EVALUATION

7.0 **TUTORIAL**

- 7.1 To prepare a detailed estimate of an irrigation canal partly cutting and partly banking
- 7.2 To prepare a detailed estimate of a double storied RCC framed building with verandah, latrines, septic tank, fencing wall with decorative finish (including plumbing, sanitary, steel and timber works)
- 7.3 To prepare a detailed estimate of finishing items such as plastering, painting, varnishing etc.
- 7.4 To prepare a supplementary estimate of a RC building for addition, alteration or deviation from the original plan of the building after part execution
- 7.5 To prepare an estimate for annual repair of a RCC building
- 7.6 To prepare an estimate for RC box culvert.

TOTAL 60

Note: The above exercise will be given to the students as specific guided project work. They will be supplied with necessary drawing details. These exercises should be preferably run in parallel with the theoretical instruction

REFERENCE BOOKS:

Sl. No.	Name of Book	Author	Publishers
1.	Estimating and Costing in Civil Engineering: Theory & Practice	B.N. Dutta	Sangam Books
2.	Civil Engineering Estimating & Costing	Vazirani & Chandola	Khanna Publishers
3.	Estimating, Costing and Specification	M. Chakraborty	
4.	Estimation Costing & Valuation	S. C. Rangwala	Charotar Publishing House Pvt. Ltd
5.	Estimating for Civil Engineers	D. V. Varshney	CBS Publishers

08

3

30

TOTAL:

30

L T P 3 1 2

Total marks: 150

Total Contact hrs.: Theory: 45 Tutorial: 15 Practical: 30 *Theory Class duration:* 45 classes of 1 hr. or 60 classes of 45 minutes *Pre requisite: C405 Credit: 5* Curri. Ref. No.: CE506

Theory: End Term Exam: 75 P.A.: 25 *Practical:* End Term Exam: 25 I.A: 25

RATIONALE:

Surveying- II is the sequential course following Surveying-I. It covers the technique of handling and use of theodolite, a versatile instrument, in surveying for horizontal and vertical angular measurement, traversing, horizontal linear measurement, setting out curves and layout of different types of structures in the site. The course also gives an exposure to the students about the modern surveying instruments (Total Station). The theory course is supplemented with practical course in Surveying Practice-II.

AIM:

The course content of Surveying -II has been designed to provide adequate information to develop competency in a learner to- comprehend the concepts of plane table surveying,

- 1. Prepare survey map by conducting traverse survey with theodolite
- 2. Measure height of objects with the help of theodolite
- 3. Determine horizontal distance by tacheometry
- 4. Set out circular curve in the field
- 5. Lay out the construction plan of different types of structures at the site
- 6. Use modern electronic surveying instruments (Total Station)

COURSE CONTENT:

Unit	Торі	c/Sub-Topic	Hrs.	Total hrs.
	-			
1.0	THE	ODOLITE	30	
	1.1	Introduction, types, parts and various accessories of theodolite		
	1.2	Temporary and permanent adjustment of theodolite		
	1.3	Measurement of horizontal and vertical (interior and exterior) angles using theodolite		
	1.4	Methods of Measurement: Repeatition and Reiteration		
	1.5	Methods of traversing with theodolite by measuring: including angle, direct angle, deflection angle		
	1.6	Traverse computation: Latitude and departure, consecutive co-ordinates, independent co-ordinates, adjustment of closing errors, angular errors and bearing ,simple problems		
	1.7	Methods of Triangulation, Braces Quadrilateral: Adjustments and Numerical Problems		
	1.8	Base Line Measurement method, correction of base line		
	110	distance and extension of base		
	1.9	Principles of EDM: <i>Total Station</i>		
2.0		HEOMETRY	4	
	2.1	Introduction, tachometric constants: Determination		
	2.2	Methods of tachometric measurement: horizontal and inclined sight (no deduction)		
3.0	CUR		8	
	3.1	Introduction, definition of different terms of curves		
	3.2	Uses of simple, compound, vertical and reverse curves in field		
	3.3	Methods of setting out of circular curve with transition: Linear method, Instrumental method		
	3.4	Simple problems on circular curves		
4.0		MATIVE EVALUATION	3	
		TOTAL:	~	45

Sl. No.	Name of Book	Author	Publishers
1.	Surveying Volume -1	Dr. K.R. Arora	Standard Book House
2.	Surveying Volume -2	Dr. K. R. Arora	Standard Book House
3.	Surveying & Levelling	S.C. Rangwala	Charotar Publishing House
4.	Surveying – Volume 1	S. Duggal	ТМН
5.	Surveying – Volume 2	S. Duggal	ТМН
6.	Surveying & Levelling	N. Bask	ТМН
7.	Surveying, 7/e	Bannister	Pearson
8.	Surveying & Levelling	R. Subramanian	Oxford University Press

PRACTICAL

Unit	TOF	PIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	CON	JTOURING:	6	
	1.1	To prepare a contour map for a given plot by tachometric		
		survey		
	1.2	Radial method		
	1.3	Grid method		
2.0	THE	CODOLITE SURVEY	12	
	2.1	Handling of theodolite, setting up and temporary adjustments		
	2.2	Measurement of horizontal and vertical angle		
	2.3	To prepare a closed traverse for a given plot using theodolite		
		traverse		
	2.4	Triangulation survey using theodolite		
3.0	INT	RODUCTION TO TOTAL STATION	6	
	3.1	Handling and Operation of the instrument		
	3.2	Recording of points and setting out (Traversing and		
		Topography)		
4.0		AIZONTAL CURVES	6	
	4.1	To set out a horizontal curves for a given alignment: Linear		
		method, Linear and angular method		
5.0		VEY CAMP		
	5.1	There should be survey camp of 2 week duration out side the		
		campus, Specifically in an underdeveloped area using modern		
		instruments		
		TOTAL:		30

DESIGN AND DETAILING OF STRUCTURE – I

L T P 3 1 2

Total marks: 150

Total Contact hrs.: Theory: 45 Tutorial: 15 Practical: 30 Theory Class duration: 45 classes of 1 hr. or 60 classes of 45 minutes Pre requisite: CE408 Credit: 5 Curri. Ref. No.: CE507

Theory: End Term Exam: 75 P.A.: 25 *Practical:* End Exam: 25 I.A : 25

RATIONALE:

Safety, serviceability and durability of a structure depend on appropriate design, proper detailing and construction as per detailed drawing and specification. For this reason, 'Design and Detailing' is an important subject for Civil Engineering Diploma holders. They are most often asked to act as a supervisor in construction projects. In addition to this they may also require to work as a draftsmen responsible for preparing detailed drawing for construction sites. Diploma holders are also called upon to assist designers, suggest modifications for repair and renovation works and also to design simple structural elements. The subject attempts to cover the aspects of reinforced concrete design and detailing

AIM:

The subject aims to expose the civil engineering diploma students to design of simple R.C. structural elements and also to drawing structural details for construction.

THEORY

UNIT TOPIC/SUB-TOPIC			Hrs.	Total hrs.
1.0	Intro	duction to design & detailing	6	
	1.1	State & explain the objectives of design & detailing		
	1.2	Explain the advantages of Reinforced Concrete		
	1.3	State the different methods of design		
	1.4	Explain briefly the general concept, assumptions of		
		Working Stress Method (WSM) of design		
	1.5	State and explain different types of loads acting on		
		structures: dead load, live load, wind load, seismic load and		
		their combination (IS: 875 [Part I-V], IS: 1893-2002)		
2.0	Limit	State Method (LSM) of Design	5	
	2.1	Define Limit States		
	2.2	State & explain limit states of collapse, serviceability and		
		durability		

- 2.3 State & explain the factors responsible for (i) durability of a structure, (ii) serviceability of a structure; and how they are taken into account in design
- 2.4 Define & explain characteristic strengths of materials, such as steel & concrete (IS:456-2000)
- 2.5 Define & explain briefly different characteristic loads for structures (IS 875 Parts I to V)
- 2.6 Explain the partial safety factors for loads and material strengths under different load combinations of different limit states
- 2.7 Draw and explain the assumed actual and design stressstrain diagrams of Mild Steel, HYSD bars and concrete as per IS 456
- 3.0 Limit State of Collapse of Singly Reinforced Members in Bending
 - Explain limiting Strength of R.C. beams (Limit State of 3.1 Collapse by flexure), balanced, under reinforced sections, why over reinforced sections are not used, compression stress block in concrete
 - 3.2 Evaluate the depth of neutral axis of a given beam, solve problems
 - 3.3 Calculate moment of resistance, solve problems
 - 3.4 Design singly reinforced rectangular beams, one-way & cantilever slabs as per IS456-2000
 - 3.5 Use SP-16 for design of beams & slabs
 - 3.6 Explain basic considerations, behaviour of doubly reinforced beams
 - 3.7 Design of doubly reinforced beams, solve problems.
 - 3.8 Explain the differences in the behaviours of 'T' and 'L' beams with rectangular beams
- 4.0 Limit State of Collapse in Shear (Design for Shear by LSM)
 - 4.1 Explain shear cracks and shear failures with or without shear reinforcement
 - 4.2 Explain contribution of concrete in resisting design shear, types of shear reinforcement, design of stirrups, minimum shear reinforcement, step-by-step procedure for design of links, shear in slabs, detailing of steel.
 - 4.3 Design rectangular beams for shear and bending, solve problems, concept of 'T' and 'L' beams
- 5.0 Bond, Anchorage, Development lengths & Splicing (LSM)
 - Development length of bars 5.1
 - Explain & calculate development length for HYSD bars 5.2 for M20 & M25 grade concrete
 - 5.3 Check the development length at critical sections of a beam
 - 5.4 Explain the equivalent development length of bonds, IS code provision for anchorage, splicing of bars, laps, and importance of laps and anchorage length
- 6.0 Two-way slabs (LSM)
 - Explain the action of two-way slabs with deflected shapes, 6.1 detailed arrangement of reinforcements, torsional reinforcements at corners

5

6

7

12

- 6.2 Perform design of simply supported rectangular two-way slabs as per IS 456-2000 bending moment co-efficients, solve problems
- 7.0 Axially loaded short columns (LSM)
 - Explain short columns, braced and unbraced columns, 7.1 effective length of columns, design formula for short columns, minimum accidental eccentricity, minimum longitudinal reinforcement and transverse reinforcement, detailing at junctions with beams and footing
 - 7.2 Perform design of axially loaded short columns using IS 456 & SP-16

SESSIONAL ASSIGNMENTS

- 8.0 Draw the following with necessary details & schedule of bars from supplied hand sketches or given references such as SP 34
 - Simply supported beam, continuous beam, cantilever (a) beam.
 - (b) One way and two way slab, cantilever slab and chajja
 - RCC columns. (c)
- FORMATIVE EVALUATION 9.0

Sl. No.	Name of Book	Author	Publishers
1.	Reinforced Concrete Design	Pillai & Mennon	ТМН
2.	Design of Reinforced Concrete Structures	Gambhir	PHI Learning
3.	FundamentalsofReinforcedConcrete Design	Gambhir	PHI Learning
4.	Advanced Reinforced Concrete Design, 2 nd ed.	Varghese	PHI Learning
5.	ReinforcedConcreteDesign:Principles and Practice	Krishna, Raju N.	New Age International (P) Ltd.
6.	Reinforced Concrete Design	S. N. Sinha	ТМН
7.	RCC Designs (Reinforced Concrete Structures)	B. C. Punmia, Ashok Jain & Arun Jain	Laxmi Publication
8.	Limit State Design of Reinforced Concrete	B. C. Punmia, Ashok Jain & Arun Jain	Laxmi Publication
9.	Design of Reinforced Concrete Structures (IS: 456-2000)	Krishana Raju	CBS Publishers

REFERENCE BOOKS:

4

27

3

TOTAL:

75

CONCRETE TECHNOLOGY

L T P 3 1 2

Total Contact hrs.:

Total marks: 150

Theory: 45 Tutorial: 15 Practical: 30 **Theory Class duration:** 45 classes of 1 hr. or 60 classes of 45 minutes **Pre requisite: CE401 Credit: 5**

Curri. Ref. No.: CE508

Theory:

End Term Exam: 75 P.A.: 25 **Practical:** End Term Exam: 25 I.A.: 25

Unit	Topic/Sub-Topic	Hrs.	Total hrs.
1.0	CONCRETE AS A CONSTRUCTION MATERIAL:	1	
	1.1 Grades of concrete		
	1.2 Advantage and disadvantages of concrete		
	1.3 Concept of quality control of concrete		
2.0	CEMENT	2	
	2.1 Composition, hydration of cement, water-cement ratio and		
	compressive strength, fineness of cement, setting time,		
	soundness, types of cement.		
3.0	AGGREGATE	2	
	3.1 Classification and characteristics of aggregate, deleterious		
	substances in aggregates, fineness modulus, grading of	•	
	aggregate.		
4.0	WATER:	1	
	4.1 Quality of mixing water, curing water		
5.0	ADMIXTURES:	2	
	5.1 Important functions, classification of admixtures, accelerating		
	admixtures, retarding admixtures, water-reducing admixtures,		
	air-containing admixtures, mineral admixtures.	•	
6.0	PROPERTIES OF FRESH CONCRETE:	3	
	6.1 Concept of fresh concrete, Workability, slump test,		
	compacting factor test, Ve-bee consistency test and flow test,		
7.0	requirement of workability. PROPERTIES OF HARDENED CONCRETE:	3	
7.0			
	7.1 Role of water/cement ratio on strength, cube and cylinder compressive strengths, flexural strength of concrete, stress-		
	strain and elasticity, phenomena of creep and shrinkage,		
	permeability, durability of concrete, sulphate and acid attack		
	on concrete, efflorescence.		
8.0	QUALITY AND CONTROL OF CONCRETE:	3	
0.0	8.1 Materials, workmanship etc. as per IS:456, acceptance criteria		
	as per IS:456, quality management in concrete construction.		
9.0	PROPORTIONING OF CONCRETE MIXERS:	6	
		-	

- 16.5 Grading analysis of fine and coarse aggregates by sieving 16.6 Concrete mix design: 4 trial mixes to be performed with workability (slump) and compressive strength (cube) tests
- Preliminary NDT tests like Rebound Hammer, USPV tests 16.7

Determination of compressive strength of cement

Determination of normal consistency of cement

of cement by Le Chatelier apparatus

Determination of initial and final setting time of cement

(sample of hardened ring marks after final setting to be shown

Determination of fineness of cement by sieving and soundness

PRACTICAL

16.1

16.2

16.3

16.4

9.1

10.1

11.1

12.1

REPAIR

10.0

11.0

12.0

14.0

15.0

as per IS:10262 – 2009.

PRODUCTION OF CONCRETE:

INSPECTION AND TESTING:

prevention.

&

CONCRETE STRUCTURES:

to the students)

HIGH PERFORMANCE CONCRETE:

- Symptom, cause, prevention and remedy of defects during 14.1 construction, cracking of concrete due to different reasons, repair of cracks for different purposes, selection of techniques, polymer-based repairs, common types of repairs, shot-crete concrete or gunniting. FORMATIVE EVALUATION
- 13.0 2 Types of deterioration, corrosion of reinforcement, effects and 13.1

REHABILITATION

- polymer concrete--types and application. DETERIORATION OF CONCRETE AND ITS PREVENTION:
- principles, fibre reinforced concrete and its application,

Basic consideration for concrete mix design, choice of ingredients of the mix, grade designation, type of cement, maximum nominal size of coarse aggregate, grading of combined aggregate (IS: 483-1963 limits), analytical method, water-cement ratio, workability, durability, mix proportioning

Batching of materials, mixing of concrete materials,

transportation, placing of concrete, compaction of concrete compaction methods, vibrators, precautions for compaction by vibrators, curing of concrete, effects of delayed curing,

Inspection testing of fresh concrete, workability tests, acceptance testing of hardened concrete, surface hardness

Introduction to Silica fume concrete, mass concrete, ferro-

TECHNOLOGY

form work-requirements and types, stripping of forms.

- cement, construction in ferro-cement and applications, concrete materials used, definitions and fundamental

method, pulse velocity method, core test method.

TOTAL: 45

3

Hrs. Total hrs.

30

3

6

4

4

FOR

UNIT TOPIC/SUB-TOPIC

16.0

Sl. No.	Name of Book	Author	Publishers
1.	Concrete Technology	Neville	Pearson
2.	Concrete Technology	M. L. Gambhir	Tata McGraw Hill
3.	Concrete Technology	A.R. Santhakumar	Oxford University Press
4.	Laboratory Manual on Concrete Technology	Sood, Mittal & Kulkarni	CBS Publisher
5.	Concrete Technology	R. P. Rethaliya	Charotar Publishing House
6.	Textbook of Concrete Technology	Kulkarni, P. D.	New Age International (P) Ltd.
7.	IS: Codes — IS: 456 – 2000, 10262 – 2009, 383, 1199, 4031, 4032, 269, 8112, 12269, 455		Bureau of Indian Standards

DESIGN AND DETAILING OF STRUCTURE – II

L T P 3 1 2

Total marks: 150

Total Contact hrs.: Theory: 45 Tutorial: 15 Practical: 30 Theory Class duration: 45 classes of 1 hr. or 60 classes of 45 minutes Pre requisite: CE406 Credit: 5 Curri. Ref. No.: CE509

Theory: End Term Exam: 75 P.A.: 25 *Practical:* End Exam: 25 I.A: 25

RATIONALE:

Safety, serviceability and durability of a structure depend on appropriate design, proper detailing and construction as per detailed drawing and specification. For this reason, 'Design and Detailing is an important subject for Civil Engineering Diploma holders. They are most often asked to act as a supervisor in construction projects. In addition to this they may also require to work as a draftsmen responsible for preparing detailed drawing for construction sites. Diploma holders are also called upon to assist designers, suggest modifications for repair and renovation works and also to design simple structural elements. The subject attempts to cover designing and detailing of mainly steel structures.

AIM:

The subject aims to expose the civil engineering diploma students to design of simple structural elements and also to drawing structural details for construction.

THEORY

UNIT	TOPIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	Design of simple steel structures	15	
	1.1 State and sketch types of joints, explain and show failure of joints through sketches.		
	1.2 State the permissible stresses in rivets and bolts; Design joints (excluding joints subjected to moments).		
	1.3 Design determinate framed structure connections, solve problems for riveted and bolted connections.		
	1.4 Welding: State and explain the uses and types of welding.		
	1.5 State the permissible stresses in welding, minimum size of welding.		
	1.6 Design simple welded connections for axial forces.		
2.0	Tension Members	5	
	2.1 State and sketch the common sections of tension members. State the permissible stresses for structural steel.		

	2.2 Explain the net effective sectional area for angles and tees under different conditions, use structural steel section hand book, Design tension members (angle & tubular sections) with detailing, and solve problems.		
3.0	Compression Members	5	
	3.1 Distinguish between a strut and a column, short and a long column. Explain effective length, state maximum slenderness ratio of different compression members.	U	
	3.2 Explain and perform design of axially loaded compression members (angle & tubular sections) as per IS 800, solve problems		
	3.3 Design of column bases		
4.0	Design of simple steel beams for bending and shear	3	
5.0	Stair Case (RCC - LSM)	4	
	5.1 State & draw important types of staircases, explain effective span & principles of design		
	5.2 Design a dog-legged stair case and show the details of reinforcement		
6.0	Design of footings (RCC - LSM)	4	
	6.1 State and sketch different types of footings		
	6.2 Explain design loads for foundation design, basis of design of footings, soil pressure on foundation, checking for development lengths, procedure for design of footings, tie beams		
	6.3 Design simple masonry foundation and R.C. slab foundation for a masonry wall		
	6.4 Design isolated reinforced concrete square & rectangular footings for given data & draw detailed drawings		
	6.5 Solve problems		
7.0	FORMATIVE EVALUATION	3	
	TOTAL:		45
SESSI	ONAL ASSIGNMENTS		
UNIT	TOPIC/SUB-TOPIC	Hrs.	Total hrs.
8.0	Structural Detailing	30	
	8.1 Draw details of the following steel structures from the given line		
	diagrams:		
	a) A steel roof truss with details of bolted or riveted and welded joints and connections including that of the steel		
	column at base level with foundation		
	8.2 Detailing of a RCC dog-legged staircase.		

- 8.3 Detail of a load bearing wall footing
- 8.4 Details of a square and rectangular RCC footing

53

30

TOTAL:

Sl. No.	Name of Book	Author	Publishers
1.	Reinforced Concrete Design	Pillai & Mennon	ТМН
2.	Design of Reinforced Concrete Structures	Gambhir	PHI Learning
3.	Advanced Reinforced Concrete Design, 2 nd ed.	Varghese	PHI Learning
4.	Reinforced Concrete Design: Principles and Practice	Krishna, Raju N.	New Age International (P) Ltd.
5.	Reinforced Concrete Design	S. N. Sinha	ТМН
6.	Limit State Design of Reinforced Concrete	B. C. Punmia, Ashok Jain & Arun Jain	Laxmi Publication
7.	Design of Reinforced Concrete Structures (IS: 456-2000)	Krishana Raju	CBS Publishers
8.	Design of Steel Structure	Gaylord	ТМН
9.	Design of Steel structures	S. Duggal	ТМН
10.	Design of Steel structures	R. Raghupati	ТМН
11.	Design of Steel structures	L. Negi	ТМН
12.	Design of Steel Structures	Sairam	Pearson
13.	Steel Structures	N. Subramanian	Oxford University Press
14.	Design of Steel Structures	N. Subramanian	Oxford University Press
15.	Comprehensive Design of Steel structures	B. C. Punmia, Ashok Jain & Arun Jain	Laxmi Publication
16.	Design of Steel Structures – Volume 1	Ramchandra	Standard Book House
17.	Design of Steel Structures – Volume 2	Ramchandra	Standard Book House
18.	IS Codes: IS 456-2000, 800-2007		

EARTHQUAKE RESISTANT DESIGN & CONSTRUCTION

L T P 3 0 0

Total Contact hrs.:

45 classes of 1 hr. or 60 classes of 45 minutes **Pre requisite: Nil**

Theory Class duration:

Theory: 45

Credit: 3

Total marks: 100

Theory: End Term Exam: 75

Curri. Ref. No.: CE510

P.A.: 25

RATIONALE:

The subject Earthquake Resistant Design and Construction is very important in the present day's context. This is particularly relevant for earthquake prone areas like Northeastern part of India. So it is felt that a course to cover these aspects of Civil Engineering should be mandatory in the diploma curriculum also.

AIM:

To develop basic understanding about earthquake and earthquake resistant design and construction. To get acquainted with specifications of Indian Codes of practice is this regard and detailing requirement for earthquake resistant structures.

UNIT	TOPIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	INTRODUCTION	6	
	1.1 Introduction to earthquakes, causes of earthquakes		
	1.2 Brief history of major earthquakes in the past		
2.0	STRUCTURAL CONFIGURATION	4	
	2.1 Advantages of regular, simple and symmetrical configurations		
	over irregular ones		
	2.2 Use of separation joints (IS:4326)		
3.0	USE OF CONCRETE BANDS, TIES AND	4	
	REINFORCEMENTS IN MASONRY CONSTRUCTION		
	3.1 Reinforced Masonry work		
4.0	USE OF TIMBER CONSTRUCTION IN EARTHQUAKE	4	
	RESISTANT DESIGN (IS:4326)		
5.0	INTRODUCTION TO IS: 1893 – 2002 (PART 1)	12	
	5.1 Magnitude and Intensity of earthquakes		
	5.2 Seismic zoning		
	5.3 Definition of terms related to earthquake engineering —		
	ordinary and special moment resistant frames, shear wall,		
	separation sections, centre of mass, centre of rigidity, ductility,		
	storey drift.		
	5.4 General principles of earthquake resistant design, MCE, DBE	4.0	
6.0	DETAILED DISCUSSIONS ON DUCTILE DETAILING OF	12	
7.0	RC STRUCTURES AS PER IS: 13920	2	
7.0	FORMATIVE EVALUATION	3	4-
	TOTAL:		45

Sl. No.	Name of Book	Author	Publishers
1.	Elements of Earthquake Engineering	Jai Krishna & Jain	South Asian Publishers Private Limited
2.	Earthquake Resistant Design of Structures	Agarwal & Shrikhande	РНІ
3.	Earthquake Resistant Design of Structures	S.K. Duggal	Oxford University Press
4.	Fundamentals of Soil Dynamics and Earthquake Engineering	Prasad	PHI Learning
5.	Geotechnical Earthquake Engineering	Kramer	Pearson
6.	Earthquake tips	C. V. R. Murthy	Publication of Nicee
7.	Publications of nicee		IIT Kanpur
8.	Relevant IS Codes: 1893, 4326, 13920		
9.	Website: <u>www.nicee.org</u>		

ELECTIVE COURSES

PROFESSIONAL PRACTICES & CONSTRUCTION MANAGEMENT (Elective)

L T P 3 1 0

Total marks: 100

Curri. Ref. No.: CE601A

Total Contact hrs.: Theory: 45 Tutorial:15 Theory Class duration: 60 classes of 1 hr. or 80 classes of 45 minutes Pre requisite: CE410 Credit: 4 *Theory:* End Term Exam: 75 P.A.: 25

RATIONALE:

The knowledge of this subject is required for all engineers / technicians for working at the site/ field. This course includes the various aspects of constructional planning, construction organization and organizational behaviour including group dynamics, monitoring of progress and safety practices and quality control.

AIM:

The course content of Professional Practice and Construction Management has been designed to provide adequate information to develop competency in a learner to-

- 1. Plan simple constructional activity
- 2. Prepare construction schedule
- 3. Handle material and T&P stores
- 4. Manage the work site
- 5. Work as member/ group leader in a construction team
- 6. Resolve disputes during construction activity
- 7. Adopt appropriate constructional safety practices.
- 8. Maintain quality of construction work

UNIT	' TOP	IC/SUB-TOPIC	Hrs.	Total hrs.
1.0	MAN	JAGEMENT	3	
	1.1	Meaning and concept of management		
	1.2	Principles and function of management		
	1.3	Leadership and decision making –styles and steps of decision making		
2.0	MAN	JAGEMENT OF CONSTRUCTION	4	
	2.1	Organisation of Work- preparation of a general Programme,		
		forecast of requirements in terms of information plant, transport, labour and materials, progress of work		
	2.2	Introduction to the application of network planning and		
		scheduling technique in constructional management		
	2.3	Definition of PERT & CPM of constructional management		
3.0	ORG	GANISATION OF ENGINEERING DEPARTMENTS	1	

- 3.1 Regular and work - charged establishment, duties of a subordinate Engineer
- 4.0 WORKS
 - Classification of Work-original, minor, petty 4.1
 - Repair Work-annual repair, quadrennial repair special repair 4.2
 - 4.3 Methods of execution of work-through contractor departmentally, contract, contract agreement, Work-order, item rate contract, lump-sum contract, labour contract, employment of daily labour, piece work agreement, schedule contract cost plus percentage contract

5.0 ACCOUNTS

- Explanation of various terms-Administrative 5.1 approval, technical sanction, contingencies, budget, tender, earnest money, security deposit, advance payment, on account payment, intermediate payment, final payment, running bill, final bill, regular and temporary establishment
- 5.2 Cash, major head and sub-head of accounts, temporary advance, issue rate, storage charges, supervision charges, suspense account, debit, credit, book transfer, sub- voucher, APR register of expenditure
- 5.3 Measurement Book- use of measurement book. Maintenance procedure of making entries of measurement book, supply of materials, labour employed, standard measurements, common irregularities
- 5.4 Master roll-necessity of forms, precaution, making payment on Master rolls, unpaid wages, common irregularities
- Aquitance Roll- Its preparation and use for making payment 5.5 of pay and wages
- 5.6 Labour and Labour report- method of labour payment, use of forms and necessity of submission
- 6.0 STORES

8.0

- 6.1 Classification of stores, stock head, sub-head of account
- 6.2 Receipt, issue statement of standard forms, method of preparation of stock-account, preparation and submission of returns, verification of stock, storage of stock
- 7.0 TOOLS AND PLANTS
 - Issue and receipt register and verification of tools and plants 7.1
 - 7.2 Materials at sight account, returns use of forms, verification of stock, disposal of surplus materials, shortage and excess
 - Survey report-disposal of unserviceable and surplus materials 7.3 FORMATIVE EVALUATION

TOTAL:

45

58

24

4

3

3

3

Sl. No.	Name of Book	Author	Publishers
1.	Construction Planning and Management	Dhir, B. M.	New Age International (P) Ltd.
2.	Construction Planning & Technology	Rajiv Gupta	CBS Publishers
3.	Construction Planning, Equipment and Methods	Peurifoy	ТМН
4.	Construction Management Practices	V.K. Raina	ТМН
5.	PERT & CPM Principles and Applications	Srinath L.S.	East West Press
6.	Construction Planning and Management	Gahlot P.S. and Dhir, B.M.	Wiley Eastern Limited
7.	Management in Construction Industry	P.P.Dharwadker	Oxford & IBH
8.	Text Book of PWD Account	S.C. Dixit	
9.	PWD Accounts	A.C. Dhar	
10.	Engineering Duties & Accounts	S.K. Hussain	

ENVIRONMENTAL ENGINEERING (Elective)

Total marks: 100

L T P 3 1 0

Curri. Ref. No.: CE601B

Total Contact hrs.: Theory: 45 Tutorial:15 Theory Class duration: 45 classes of 1 hr. or 60 classes of 45 minutes Pre requisite: CE409 Credit:

Theory: End Term Exam: 75 P.A.: 25

RATIONALE:

The construction activities taken up by the technical personnel, civil engineering technicians in particular, are responsible for the environmental degradation. The civil engineers are also responsible for adopting the remedial measures. As such, a civil engineering diploma holder should have adequate knowledge about the types of pollution caused by various construction activities for adopting preventive and remedial measures. They should be also be aware of the various environmental laws for effective control of environmental pollution.

AIM:

The course content of Environmental Engineering has been designed to provide adequate information to develop competency in a learner to-

- 1. Explain the different aspects of environmental engineering
- 2. Relate the various components of ecosystem
- 3. Identify the sources and effects of environmental pollution
- 4. Analyze the polluted water, air and soil by using appropriate sampling method
- 5. Describe the role of various agencies in environmental pollution and the environmental laws.

COURSE CONTENT:

UNIT	ТОР	IC/SUB-TOPIC	Hrs.	Total hrs.
1.0		ODUCTION:	04	
-	1.1	Definition of environment and components of	-	
		Environment and related terms		
	1.2	Aims & objectives of environmental engineering		
	1.3	Impact of population growth, industrialization &		
		urbanization and energy growth on environment		
	1.4	Current issues of environmental concern like-Global		
		warming, Acid rain, Ozone depletion-features, causes		
		and impacts on living being		
2.0	ECO	LOGY:	06	
	2.1	Concepts of ecosystem and its component		
	2.2	Energy flow through an ecosystem		
	2.3	Biochemical cycles-C,N,P		
	2.4	Interrelationships between communities in an ecosystem		
	2.5	Sustainable development		
3.0	ENV	IRONMENTAL POLLUTION:	15	
	3.1	Definition of terms, parameters of pollution, types of		
		pollution		
	3.2	Water Pollution- Types of pollutants & their		
		characteristics, Sources of pollutants, effects of water		
		pollution, standards for industrial effluents, remedial		
		measures for control		
	3.3	Air Pollution- Types of pollutants & their characteristics		
		Sources of pollutants, effects of pollutants on human,		
		plants &vegetation, structures etc, permissible limits as		
		per Indian and International standard, remedial measures		
		for control		
	3.4	Noise Pollution-definition and measure of noise, types,		
		Sources of pollution, effects of noise pollution,		
		prevention & control measures		
	3.5	Land Pollution- Causes, Effects of Pesticides &		
		fertilizers used in agricultural practice, impacts of		
		blasting & open cast mining, degradation due to		
		deforestation and due to natural disaster like land		
		subsidence, case studies on mining; blasting and		
		deforestation, soil pollution management-land		
1.0	DOT 1	conservation and land reclamation	05	
4.0		LUTION SURVEY:	05	
	4.1	Planning survey, sampling locations, criterion,		
		equipment, and techniques for water & air pollution		
	4.0	survey		
	4.2	Analysis of water and air pollutants-principles &		
FO	COTT	methods D.WASTE MANIACEMENT	07	
5.0		D WASTE MANAGEMENT:	06	
	5.1	Definition of related terms and purpose		
	5.2	Sources of solid wastes, characteristics of wastes-urban		
		& rural communities, sampling methods		

- 5.3 Storage & collection- storage methods, frequency of collection, methods of collection, comparison
- 5.4 Disposal of solid wastes- principles, description of process, planning, operation, maintenance & suitability of different methods of disposal- sanitary land fill, composting, incineration

6.0 ENVIRONMENTAL MANAGEMENT:

- 6.1 Environmental legislation- salient features of different environmental protection acts in India
- 6.2 Roles of pollution control boards, local bodies and citizens in environmental pollution management
- 6.3 Environmental impact assessment- requirements and definition of related terms, method of assessment
- 6.4 Environmental ethics

7.0 FORMATIVE EVALUATION

06

03

TOTAL:

45

Sl. No.	Name of Book	Author	Publishers
1.	Introduction to Environmental Engineering and Science, 3 rd ed.	Masters & Ela	PHI Learning
2.	Textbook of Environmental Engineering	Rao	PHI Learning
3.	Basic Environmental Engineering	Gaur, R. C.	New Age International (P) Ltd.
4.	Introduction to Environmental Engineering	M. Davis & D. Cornwell	ТМН
5.	Environmental Engineering	N. Bask	ТМН
6.	Environmental Engineering	Saravananae	Pearson
7.	Environmental Engineering, 4e	Weiner	Elsevier

TUNNELS & BRIDGES (Elective)

L T P 3 1 0

Total marks: 100

Curri. Ref. No.: CE601C

Total Contact hrs.: Theory: 45 Tutorial: 15 Theory Class duration: 45 classes of 1 hr. or 60 classes of 45 minutes Pre requisite: Nil Credit: 4 *Theory:* End Term Exam: 75 P.A.: 25

RATIONALE:

Tunnels and bridges constitute important specialized components of Transportation Engineering. Many–a-times diploma holders are involved in the construction of tunnels and bridges. As there is no common subject to cover the preliminary parts of the subject topics, they are covered in an elective subject, so that interested students have a chance to acquire necessary preliminary knowledge in the subject.

AIM:

The aim of the subject 'Tunnels and Bridges' is to impart knowledge of different components of tunnels and bridges through informative statements, description, explanation and sketches to the diploma students of civil engineering intending to be involved in the construction and maintenance of tunnels and bridges.

UNIT	ТОР	IC/SUB-TOPIC	Hrs.	Total hrs.
		NELS		
1.0	Intro	duction:	1	
	1.1	Definition of tunnels		
	1.2	Necessity of tunnels		
	1.3	Functions of tunnels		
	1.4	Advantages & disadvantages of tunnels		
2.0	TUN	NEL SURVEYING	3	
	2.1	Factors affecting alignment & grade of a tunnel		
	2.2	Method of location of centre line of tunnel on the ground		
	2.3	Method of transferring the centre line of tunnel to inside of		
		tunnel		
3.0	Size &	& Shape of Tunnel	2	
	3.1	Different shapes of tunnels - description, sketches		
	3.2	Factors affecting the size of tunnels		
	3.3	Typical sectional views of tunnels for (a) a National		
		Highway (b) a single & double broad gauge railway track		
4.0	Cons	truction of tunnels:	3	
	4.1	Methods of tunneling in rocks		
		0		

	1.0		
	4.2	Operations involved in tunneling in rocks	
	4.3	Methods of tunneling in soft soil	
	4.4	Safety precautions to be adopted in tunneling	
ΕO	4.5	Maintenance of tunnels	1
5.0		ation of tunnels	1
	5.1	Necessity of ventilation	
	5.2	Methods of ventilation	
	5.3	Shafts - purpose, classification, location	
()	5.4 T	Methods of dust control	2
6.0		el Lining	2
	6.1 6.2	Necessity of lining	
		Functions of lining	
	6.3 6.4	Types of lining	
7.0		Operations involved in lining of tunnels	1
7.0	7.1	age of tunnels	1
	7.1 7.2	Necessity of drainage	
	1.2	Methods of drainage	
	BRID	OGES	
8.0		luction:	2
0.0	8.1	Definitions	
	8.2	Components of a bridge	
	8.3	Classification of bridges	
	8.4	Requirements of an ideal bridge	
9.0	Bridge	e Site investigation, hydrology & planning	4
	9.1	Selection of bridge site	
	9.2	Bridge alignments	
	9.3	Determination of flood discharge	
	9.4	Waterway & economic span	
	9.5	Afflux, clearance & free board	
	9.6	Collection of bridge design data & sub surface investigation	
10.0	Bridge	e foundation	4
	10.1	Scan depth, minimum depth of foundation	
	10.2	Types of bridge, foundations - spread foundation, pile	
		foundation - pile driving, well foundation - sinking of wells,	
		caisson foundation	
	10.3	Coffer dams	
11.0	Bridge	e substructure and approaches	4
	11.1	Piers & types - forces acting & design principles	
	11.2	Abutments, types - forces acting & design principles	
	11.3	Wing walls, types and their stability	
	11.4	Approaches	
12.0	Perma	anent bridges	4
	12.1	Masonry bridges	
	12.2	Steel bridges - classification brief description with sketches -	
		plated girder bridges, truss bridges, steel arch bridges, rigid	
		frame steel bridges, cable stayed bridges, continuous steel	
		bridges, suspension bridges	

	12.3 Concrete bridges - classification, brief description with sketches - slab & girder bridges, balanced cantilever bridges,	
	continuous bridges, arch bridges, rigid frame bridges, pre-	
	stressed concrete bridges.	
	12.4 IRC bridge loading	
13.0	Culverts & causeways	3
	13.1 Types of culverts - brief description	
	13.2 Types of causeways - brief description	
14.0	Bridge details	3
	14.1 Bridge bearing - types with brief description & sketches	
	14.2 Joints in bridges - description with sketches	
	14.3 Railings	
15.0	Movable bridges - Swing bridges, bascular bridges, Transer	2
	bridges, Transporter bridges, lift bridges	
16.0	Methods of Bridge Construction & Maintenance	3
	16.1 Erection of steel girder, truss, RCC	
	16.2 Maintenance of bridges	
17.0	FORMATIVE EVALUATION	3
11.0	ΤΟΤΔΙ	45
	IOTAL.	45

Sl. No.	Name of Book	Author	Publishers
1.	Harbour Dock and Tunnel	R. Srinivasan	Charotar Publishing
	Engineering		House
2.	Railway Bridge and Tunnel	K. Rangawala Dalal	Charotar Publishing
	Engineering		House
3.	Principles and Practice of Bridge	S.P. Bindra	Dhanpat Rai & Sons
	Engineering		
4.	Roads, Railways, Bridges and Tunnel	Ahuja & Biroi	Standard Book House
	Engineering		
5.	Tunnel Engineering	S.P. Bindra	Dhunpat Rai & Sons
6.	Roads, Railways, Bridges & Tunnel	B.L. Gupta & A.	Standard Publishers
	Engineering	Gupta	

ADVANCED SURVEY (Elective)

Total marks: 100

L T P 1 0 4 Curri. Ref. No.: CE602A

Total Contact hrs.: Theory: 15 Practical: 60 Theory Class duration: 45 classes of 1 hr. or 60 classes of 45 minutes Pre requisite: Nil Credit: 3

Practical: End Term Exam: 50 I.A.: 50

RATIONALE:

Now a days application of computer software in Civil Engineering analysis, design and drawing has become a routine. Though the diploma level students are not directly associated with detailed analysis and design, they must know how to create an interpret the drawings. Hence this course will be immensely helpful in their service life.

AIM:

To familiarize the students about the use of modeling software along with a basic introduction to analysis and design software.

COURSE CONTENT:

UNIT	TOPIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	TRIANGULATION SURVEY		
	1.1 Angle Measurements and Solution of Braced Quadrilateral	4+16	20
	Network; Determination of Azimuth of a Line		
2.0	DETAIL TOPOGRAPHIC	4+12	16
	2.1 Fill in works by Plain Tabling and Contouring using radial and		
	spot levelling methods		
	2.2 Tacheometric Survey		
3.0	TOTAL STATION AND ITS APPLICATION	7+28	35
	3.1 Detail Survey and Profile Levelling; Calculation of Area and		
	Volume		
	3.2 Engineering Surveys: Setting out of Curves – Horizontal: Simple,		
	Compund, Reverse and Transition, Vertical. Hydrographic		
	Survey and Tunneling.		
4.0	FORMATIVE EVALUATION	4	
	TOTAL:		75

Sl. No.	Name of Book	Author	Publishers
1.	Surveying Volume -1	Dr. K.R. Arora	Standard Book House
2.	Surveying Volume -2	Dr. K. R. Arora	Standard Book House
3.	Surveying & Levelling	S.C. Rangwala	Charotar Publishing House
4.	Surveying – Volume 1	S. Duggal	ТМН
5.	Surveying – Volume 2	S. Duggal	ТМН
6.	Surveying & Levelling	N. Bask	ТМН
7.	Surveying, 7/e	Bannister	Pearson
8.	Surveying & Levelling	R. Subramanian	Oxford University Press
9.	Advanced Surveying: Total Station, Gis And Remote Sensing	Gopi	Pearson Education India
10.	Higher Surveying	A. M. Chandra	New Age International

COMPUTER AIDED DESIGN & DRAWING (Elective)

L T P 1 0 4

Total marks: 100

Curri. Ref. No.: CE602B

Total Contact hrs.: Theory: 15 Practical: 60 Theory Class duration: 45 classes of 1hr. or 60 classes of 45 minutes Pre requisite: Nil Credit: 3 **Practical:** End Term Exam: 50 I.A.: 50

RATIONALE:

Now a days application of computer software in Civil Engineering analysis, design and drawing has become a routine. Though the diploma level students are not directly associated with detailed analysis and design, they must know how to create an interpret the drawings. Hence this course will be immensely helpful in their service life.

AIM:

To familiarize the students about the use of modeling software along with a basic introduction to analysis and design software.

COURSE CONTENT:

UNIT	TOPIC/SUB-TOPIC	Hrs.	Total hrs.
1.0	INTRODUCTION TO A MODELING SOFTWARE (AUTOCAD OR ANY OTHER SIMILAR DRAFTING SOFTWARE)		
	1.1 To use software for drawing different types of structures including masonry and reinforced concrete ones. Drawing of different structural elements like beams, slabs, columns and foundations showing placement of different types of reinforcements.	5+20	25
2.0	 INTRODUCTION TO A ANALYSIS AND DESIGN SOFTWARE (STAAD.PRO OR EQUIVALENT SOFTWARE) 2.1 Utility of the software and its application in Civil Engineering 2.2 Basic screen orientation, overview of the different steps to be followed for modeling a structure, different components of an input file, axes system, unit system, different types of structures and structural element that can be analyzed, model generation of simple beams and columns by building the structure geometry assigning the properties and at5eruals loads, analysis. 	10+36	46
3.0	FORMATIVE EVALUATION	4	
	TOTAL:		75

SAMPLE PATH

SAMPLE PATH: TERM - I

Sl.	Code	Course	St								Total	Credit		
No			Pre-	Cont	tact Ho	urs /		Theory			Practical			
			requisite		Week						S			
				L	Т	Р	End	Progressive Assessment		End	8			
							Exam			Exam		sment		
								Class Test	Assignment		Sessional	Viva-voce		
1	G101	Communication		3	0	0	75	10	15	0	0	0	100	3
		Skill-I												
2	G103	Mathematics-I		3	1	0	75	10	15	0	0	0	100	4
3	G105	Physics - I		3	0	2	75	10	15	25	25	0	150	4
4	G107	Chemistry - I		3	0	2	75	10	15	25	25	0	150	4
5	G201	Engineering		1	0	3	50	0	0	0	50	0	100	3
		Drawing – I												
6	G203	Workshop Practice		1	0	3	0	0	0	50	50	0	100	3
_		- I		-			-		<u></u>				100	
7	G205	Introduction to		2	1	2	50	0	0	25	25	0	100	4
		Computer												
		Programming												
8	G109	NCC (I) / NSS (I)		0	0	2	0	0	0	25	25	0	50	1
		TOTAL		16	2	14	400	40	60	150	200	0	850	26

SAMPLE PATH: TERM – II

Sl.	Code	Course	Stu	dy Scho	eme					Total	Credit			
No			Pre-	Conta	act Ho	ours /	Theory Practical						Marks	
			requisite		Week			-						
				L	Т	Р	End	Pro	gressive	End	Progre	ssive		
							Exam	Ass	essment	Exam	Assess	ment		
								Class	Assignme		Sessional	Viva-		
								Test	nt			voce		
1	G102	Communication Skill – II	101	2	1	2	50	0	0	25	25	0	100	4
2	G104	Mathematics – II		3	1	0	75	10	15	0	0	0	100	4
3	G106	Physics – II	105	3	0	2	75	10	15	25	25	0	150	4
4	G108	Chemistry – II	107	3	0	2	75	10	15	25	25	0	150	4
5	G202	Engineering Drawing – II	201	1	0	3	50	0	0	0	50	0	100	3
6	G204	Workshop Practice – II	203	1	0	3	0	0	0	50	50	0	100	3
7	G206	Engineering Mechanics		3	0	0	75	10	15	0	0	0	100	3
8	G110	NCC II / NSS II		0	0	2	0	0	0	25	25	0	50	1
		TOTAL		16	2	14	400	40	60	150	200	0	850	26

Sl.	Code	Course	Study Scheme]		Total	Credit			
No			Pre-	Contact Hour/Week				Theory			Practical		Marks	
			requisite	L	Т	Р	End Exam	0	Progressive Assessment		End Progressiv Exam Assessmen			
								Class Test	Assign ment		Sessio nal	Viva		
1	G207	Fundamentals of Electrical & Electronics Engg.		3	0	2	75	10	15	25	25	0	150	4
2	G301	(Soft Core I) Environmental Education		3	0	0	75	10	15	0	0	0	100	3
3	G302	Soft Core II		3	0	0	75	10	15	0	0	0	100	3
4	CE401	Building Material		3	1	2	75	10	15	25	25	0	150	5
5	CE402	Hydraulics		3	1	2	75	10	15	25	25	0	150	5
6	CE403	CE Drawing – I	G201 & 202	0	0	4	0	0	0	50	50	0	100	2
7	CE406	Structural Mechanics	G205	3	1	0	75	10	15	0	0	0	100	4
		TOTAL		18	3	10	450	60	90	125	125	0	850	26

SAMPLE PATH: TERM - III

Sl.	Code	Course]		Total	Credit						
No			Pre-	Contact Hour/Week			Theory Practical						Marks	
			requisit e	L	Т	Р	End Exam	Progressive Assessment		End Exam	0	essive sment		
								Class Test	Assign ment		Sessio nal	Viva		
1	CE410	Building Construction	CE401	3	1	0	75	10	15	0	0	0	100	4
2	CE404	CE Drawing – II	CE403	0	0	4	0	0	0	50	50	0	100	2
3	CE405	Surveying – I		3	1	2	75	10	15	25	25	0	150	5
4	CE408	Theory of Structure	CE406	3	1	0	75	10	15	0	0	0	100	4
5	CE407	Geotechnical Engg I		3	1	2	75	10	15	25	25	0	150	5
6	CE507	Design & Detailing of Structure – I	CE406	3	1	2	75	10	15	25	25	0	150	5
7	CE503	Water Resource Engg	CE402	3	1	0	75	10	15	0	0	0	100	4
	TOTAL			18	6	10	450	60	90	125	125	0	850	29

SAMPLE PATH: TERM - IV

Sl.	Code	Course		Study S	cheme]		Total	Credit					
No			Pre-	Contact Hour/Week				Theory			Practical		Marks			
			requisit e	L	Т	Р	End Exam	0	Progressive Assessment		0		0	essive sment		
								Class Test	Assign ment		Sessio nal	Viva				
1	CE501	Highway & Transportation Engg.		3	1	2	75	10	15	25	25	0	150	5		
2	CE504	Estimating – I		2	2	0	75	10	15	0	0	0	100	4		
3	CE508	Concrete Technology	CE401	3	1	2	75	10	15	25	25	0	150	5		
4	CE509	Design of Structure – II	CE406	3	1	2	75	10	15	25	25	0	150	5		
5	CE409	Water & Waste Water Engg.	CE402	3	1	2	75	10	15	25	25	0	150	5		
6	CE506	Surveying – II	CE405	3	1	2	75	10	15	25	25	0	150	5		
		TOTAL		17	7	10	450	60	90	125	125	0	850	29		

SAMPLE PATH: TERM - V

Sl.	Code	Course		Study So	cheme]	Evaluatio	2		Total	Credit	
No			Pre-	Conta	ct Hour/	'Week		Theory			Practical	Marks		
			requisite	L	Т	Р	End Exam	0	essive sment	End Exam	0	essive sment		
								Class Test	Assign ment		Sessio nal	Viva		
1	CE510	Earthquake Resistant Design & Construction	CE408 & 509	3	0	0	75	10	15	0	0	0	100	3
2	CE505	Estimating – II	CE504	2	2	0	75	10	15	0	0	0	100	4
3	CE502	Geotechnical Engineering II		3	1	0	75	10	15	0	0	0	100	4
4	CE601	Elective – I		3	1	0	75	10	15	0	0	0	100	4
5	CE602	Elective – II		1	0	4	0	0	0	50	50	0	100	3
6	CE511	Technical Seminar		0	0	6	0	0	0	0	50	50	100	2
7	CE512	Project		0	0	8	0	0	0	0	100	50	150	4
8	CE513	Industrial Training (3 weeks OJT + 1 week orientation)		0	0	0	0	0	0	0	100	100	200	10
		TOTAL		12	4	18	300	40	60	50	300	200	950	34

SAMPLE PATH: TERM - VI